Skip to main content
Log in

Factors Affecting Foamed Emulsions Prepared with an Extract from Quillaja saponaria Molina: Oil Droplet Size, pH and Presence of Beta-Lactoglobulin

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Oil is well-known to act as antifoam and to destabilize foam lamellae by bridging between two adjacent foam bubbles. It was hypothesized that an optimal oil droplet size exists with respect to the stability of a foamed emulsions, where the oil droplets are sufficiently small to postpone bridging and the amount of free surfactant is sufficient to stabilize the oil/water-interface and the air/water-interface. Emulsions with 0.3% Quillaja saponin and a median oil drop-let size between 0.2 and 2.0 μm were prepared under varying homogenization conditions and characterized in a dynamic foam analyzer. Results confirmed the above mentioned hypothesis. Stability of the foamed emulsions considerably increased with increasing pH, which was attributed to electrostatic repulsion between oil droplets and the effect on the balance between disjoining pressure and capillary pressure. In a binary system containing proteins and saponins, stability of foamed emulsions can be further increased when emulsifiers are added sequentially. When the emulsion is stabilized by β-LG and QS is added after emulsification stability of the foamed emulsion is distinctly higher compared to systems, where QS and β-LG are added prior to emulsification. Future studies should deepen our understanding of these complex dispersed systems by investigating the molecular interactions including other proteins and additional food constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Dinda, S. Debnath, B.C. Mohanta, Y. Harigaya, Chem. Biodivers. (2010). doi:10.1002/cbdv.200800070

    Google Scholar 

  2. R. Hänsel, O. Sticher, Pharmakognosie–Phytopharmazie, 9th edn. (Springer Medizin Verlag, Heidelberg, 2010)

    Google Scholar 

  3. J.S. Negi, P.S. Negi, G.J. Pant, M. Rawat, S.K. Negi, J. Poisonous Med. Plant Res. 1, 6–11 (2013)

    Google Scholar 

  4. J.-P. Vincken, L. Heng, A. de Groot, H. Gruppen, Phytochemistry 68, 275–297 (2007). doi:10.1016/j.phytochem.2006.10.008

    Article  CAS  Google Scholar 

  5. Ö. Güçlü-Üstündağ, G. Mazza, Crit. Rev. Food Sci. Nutr. (2007). doi:10.1080/10408390600698197

    Google Scholar 

  6. K. Golemanov, S. Tcholakova, N. Denkov, E. Pelan, S.D. Stoyanov, Langmuir 28, 12071–12084 (2012)

    Article  CAS  Google Scholar 

  7. K. Wojciechowski, Colloids Surf. B 108, 95–102 (2013)

    Article  CAS  Google Scholar 

  8. K. Golemanov, S. Tcholakova, N. Denkov, E. Pelan, S.D. Stoyanov, Soft Matter 9, 5738 (2013)

    Article  CAS  Google Scholar 

  9. K. Golemanov, S. Tcholakova, N. Denkov, E. Pelan, S.D. Stoyanov, Soft Matter 10, 7034–7044 (2014)

    Article  CAS  Google Scholar 

  10. Y. Yang, D.J. McClements, Food Hydrocoll. 30, 712–720 (2013)

    Article  Google Scholar 

  11. L. Bai, S. Huan, J. Gu, D.J. McClements, Food Hydrocoll. 61, 703–711 (2016)

    Article  CAS  Google Scholar 

  12. Y. Yang, M.E. Leser, A.A. Sher, D.J. McClements, Food Hydrocoll. 30, 589–596 (2013)

    Article  CAS  Google Scholar 

  13. S. Böttcher, S. Drusch, Food Biophys. 11, 91–100 (2016)

    Article  Google Scholar 

  14. P.A. Wierenga, H. Gruppen, Curr. Opin. Colloid Interface Sci. (2010). doi:10.1016/j.cocis.2010.05.017

    Google Scholar 

  15. P. Wilde, A. Mackie, F. Husband, P. Gunning, V. Morris, Adv. Colloid Interf. Sci. (2004). doi:10.1016/j.cis.2003.10.011

    Google Scholar 

  16. K. Wojciechowski, M. Piotrowski, W. Popielarz, T.R. Sosnowski, Food Hydrocoll. (2011). doi:10.1016/j.foodhyd.2010.07.007

    Google Scholar 

  17. A.R. Mackie, A.P. Gunning, P.J. Wilde, V.J. Morris, Langmuir (2000). doi:10.1021/la0003950

    Google Scholar 

  18. J.T. Petkov, T.D. Gurkov, B.E. Campbell, R.P. Borwankar, Langmuir (2000). doi:10.1021/la991287k

    Google Scholar 

  19. V.B. Fainerman, S.V. Lylyk, E.V. Aksenenko, J.T. Petkov, J. Yorke, R. Miller, Colloids Surf. A Physicochem. Eng. Asp. (2010). doi:10.1016/j.colsurfa.2009.02.022

    Google Scholar 

  20. S. Böttcher, J. Keppler, S. Drusch, Colloids Surf. A Physicochem. Eng. Asp. (2017). doi:10.1016/j.colsurfa.2016.12.041

    Google Scholar 

  21. D. Langevin, ChemPhysChem (2008). doi:10.1002/cphc.200700675

    Google Scholar 

  22. B. Kichatov, A. Korshunov, K. Son, E. Son, Combust. Flame (2016). doi:10.1016/j.combustflame.2016.07.017

    Google Scholar 

  23. R.D. Bee, A. Clement, A. Prins, in Food Emulsions and Foams: Based on the proceedings of an International Symposium organised by the Food Chemistry Group of The Royal Society of Chemistry at Leeds from 24th to 26th March 1986, ed. by E. Dickinson (Woodhead Publishing Limited, 1987) pp. 128–143

  24. M.E. Leser, M. Michel, Curr. Opin. Colloid Interface Sci. (1999). doi:10.1016/S1359-0294(99)00037-0

    Google Scholar 

  25. J.-C. Arboleya, M.J. Ridout, P.J. Wilde, Food Hydrocoll. (2009). doi:10.1016/j.foodhyd.2008.10.007

    Google Scholar 

  26. H.-J. Kim, A. Bot, d. Vries, C.M. Isabel, M. Golding, E.G. Pelan, Food Res. Int. (2013). doi:10.1016/j.foodres.2013.04.027

    Google Scholar 

  27. J. Lee, A. Nikolov, D. Wasan, Ind. Eng. Chem. Res. (2012). doi:10.1021/ie301102m

    Google Scholar 

  28. B.M. Mbama Gaporaud, P. Sajet, G. Antonini, Chem. Eng. Sci. (1998). doi:10.1016/S0009-2509(98)00332-7

    Google Scholar 

  29. T. Sherif, R. Ahmed, S. Shah, M. Amani, Rheological behavior of oil-based drilling foams, J. Nat. Gas. Sci. Eng. (2015). doi:10.1016/j.jngse.2015.07.022

    Google Scholar 

  30. M. Brun, M. Delample, E. Harte, S. Lecomte, F. Leal-Calderon, Food Res. Int. (2015). doi:10.1016/j.foodres.2014.11.044

    Google Scholar 

  31. N.D. Denkov, Langmuir 20, 9463–9505 (2004)

    Article  CAS  Google Scholar 

  32. A. Kezwon, K. Wojciechowski, Adv. Colloid Interf. Sci. (2014). doi:10.1016/j.cis.2014.04.005

    Google Scholar 

  33. S. Böttcher, M. Scampicchio, S. Drusch, Colloids Surf. A Physicochem. Eng. Asp. (2016). doi:10.1016/j.colsurfa.2016.07.057

    Google Scholar 

  34. M. Najmabadi, T. Tamm, M. Klaiber, Y. Baroud, S. Drusch, S. Simon, Real-time determination of interfacial tension from the shape of a pendant drop based on embedded image processing (Chania, Greece, 2013)

    Google Scholar 

  35. R. Aveyard, B.P. Binks, J.H. Clint, P. Fletcher, In Foams and Emulsions eds. By J.F. Sadoc, N. Rivier, (Springer Netherlands, Dordrecht, 1999) pp. 21–44

  36. C. Stubenrauch, R.V. Klitzing, J. Phys. Condens. Matter 15 (2003)

  37. H. Fauser, R.V. Klitzing, Soft Matter 10, 6903–6916 (2014)

    Article  CAS  Google Scholar 

  38. L.L. Schramm, Emulsions, foams, and suspensions: Fundamentals and applications (Wiley-VCH, Weinheim, Great Britain, 2005)

    Book  Google Scholar 

  39. S.I. Karakashev, M.V. Grozdanova, Adv. Colloid Interf. Sci. (2012). doi:10.1016/j.cis.2012.04.001

    Google Scholar 

  40. B. Heurtault, P. Saulnier, B. Pech, J.-E. Proust, J.-P. Benoit, Biomaterials 24, 4283–4300 (2003)

    Article  CAS  Google Scholar 

  41. J.l. Zhai, L. Day, M.-I. Aguilar, T.J. Wooster, Curr. Opin. Colloid Interface Sci. 18, 257–271 (2013)

  42. D. Zare, J.R. Allison, K.M. McGrath, Biomacromolecules 17, 1572–1581 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ingredion Germany GmbH for providing the Quillaja saponin extract. Furthermore the authors acknowledge the cooperation for foam analysis with Sascha Rohn, Cornelia Rauh and Daniel Baier. The authors gratefully acknowledge the financial support of the Friedrich-Naumann Foundation for Freedom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Drusch.

Additional information

Sandra Böttcher and Marina Eichhorn are Co-First Author

Electronic supplementary material

Table S1

(DOCX 13.1 kb)

Figure S1

(DOCX 143 kb)

Figure S2

(DOCX 267 kb)

Figure S3

(sDOCX 83.8 kb)

Figure S4

(DOCX 66 kb)

Figure S5

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böttcher, S., Eichhorn, M. & Drusch, S. Factors Affecting Foamed Emulsions Prepared with an Extract from Quillaja saponaria Molina: Oil Droplet Size, pH and Presence of Beta-Lactoglobulin. Food Biophysics 12, 250–260 (2017). https://doi.org/10.1007/s11483-017-9481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9481-8

Keywords

Navigation