Skip to main content
Log in

Crystallization and Gelation Behavior of Low- and High Melting Waxes in Rice Bran Oil: a Case-Study on Berry Wax and Sunflower Wax

Food Biophysics Aims and scope Submit manuscript

Abstract

Low-melting berry wax (BEW) has proven to be a good oil gelator with a positive contribution to the consistency and flexibility of the structured oil. Nevertheless, the properties of BEW and the corresponding oleogel have not yet been investigated in-depth. In this research, the difference in crystallization and gelling behavior between sunflower wax (SW), a high melting wax, and BEW, a low-melting wax, in rice bran oil (RBO) was investigated. The difference in melting and crystallization temperatures can be explained by the different chemical composition (long-chain wax esters in SW and short-chain fatty acids in BEW). The heterogeneity in crystal habits (unidirectional platelets versus microcrystalline particles) and polymorphism (orthorhombic versus hexagonal) are responsible for the varying gel strength and hardness of the respective SW- and BEW-oleogels. The microcrystalline BEW particles aligned and reorganized during 1-month storage at 5 °C, which leaded to an increase in the gel strength and hardness of BEW-oleogel. The gelling property of SW-oleogel however did not significantly differ after 4 weeks at 5 °C, despite of the appearance of spherulitic crystalline clusters. The changes in the physical properties of wax-based oleogels during storage time were further explored using differential scanning calorimetry, polarized light microscope, powder X-ray diffraction and rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. C.M. Oomen, M.C. Ocké, E.J. Feskens, M.-A.J. van Erp-Baart, F.J. Kok, D. Kromhout, Lancet 357(9258), 746–751 (2001)

    Article  CAS  Google Scholar 

  2. D. Mozaffarian, M.B. Katan, A. Ascherio, M.J. Stampfer, W.C. Willett, N. Engl. J. Med. 354(15), 1601–1613 (2006)

    Article  CAS  Google Scholar 

  3. A.G. Marangoni, N. Garti, Edible oleogels: structure and health implications (AOCS Press, Urbana, 2011)

    Google Scholar 

  4. A.R. Patel, N. Cludts, M.D.B. Sintang, A. Lesaffer, K. Dewettinck, Food Funct. 5(11), 2833–2841 (2014)

  5. A.R. Patel, D. Schatteman, W.H. De Vos, K. Dewettinck, RSC Adv. 3(16), 5324–5327 (2013)

    Article  CAS  Google Scholar 

  6. A.R. Patel, D. Schatteman, W.H. De Vos, A. Lesaffer, K. Dewettinck, J. Colloid Interface Sci. 411, 114–121 (2013)

    Article  CAS  Google Scholar 

  7. H.S. Hwang, S. Kim, M. Singh, J.K. Winkler Moser, S.X. Liu, J. Am. Oil Chem. Soc. 89(4), 639–647 (2012)

    Article  CAS  Google Scholar 

  8. L.S.K. Dassanayake, D.R. Kodali, S. Ueno, K. Sato, J. Am. Oil Chem. Soc. 86(12), 1163–1173 (2009)

    Article  CAS  Google Scholar 

  9. J.F. Toro-Vazquez, J.A. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, M. Alonzo-Macias, M. González-Chávez, J. Am. Oil Chem. Soc. 84(11), 989–1000 (2007)

    Article  CAS  Google Scholar 

  10. J. Daniel, R. Rajasekharan, J. Am. Oil Chem. Soc. 80(5), 417–421 (2003)

    Article  CAS  Google Scholar 

  11. A.G. Marangoni, J. Am. Oil Chem. Soc. 89(5), 749–780 (2012)

    Article  CAS  Google Scholar 

  12. L.S.K. Dassanayake, D.R. Kodali, S. Ueno, K. Sato, J. Oleo Sci. 61(1), 1–9 (2012)

    Article  Google Scholar 

  13. A.I. Blake, A.G. Marangoni, Food Biophysics. 10(4), 456–465 (2015)

    Article  Google Scholar 

  14. A.J. Martins, M.A. Cerqueira, L.H. Fasolin, R.L. Cunha, A.A. Vicente, Food Res. Int. 84, 170–179 (2016)

    Article  CAS  Google Scholar 

  15. A.I. Blake, A.G. Marangoni, Food Biophys. 1–13 (2015)

  16. S. Jana, S. Martini, J. Agric. Food Chem. 62(41), 10192–10202 (2014)

    Article  CAS  Google Scholar 

  17. D.C. Zulim Botega, A.G. Marangoni, A.K. Smith, H.D. Goff, J. Food Sci. 78(9), C1334–C1339 (2013)

    Article  CAS  Google Scholar 

  18. A. Jang, W. Bae, H.-S. Hwang, H.G. Lee, S. Lee, Food Chem. 187, 525–529 (2015)

    Article  CAS  Google Scholar 

  19. C.D. Doan, A.R. Patel, I. Tavernier, N. De Clercq, K. Van Raemdonck, D. Van de Walle, C. Delbaere, K. Dewettinck, Eur. J. Lipid Sci. Technol. 118(12), 1903–1914 (2016)

  20. P.E. Kolattukudy, Chemistry and biochemistry of natural waxes (Elsevier Scientific Pub. Co., Amsterdam, 1976)

    Google Scholar 

  21. M. Regert, Organic mass spectrometry in art and archaeology, (2009), p. 97–129

  22. C.D. Doan, C.M. To, M. De Vrieze, et al., Food Chem. 214, 717–725 (2017)

    Article  CAS  Google Scholar 

  23. M. Chopin-Doroteo, J.A. Morales-Rueda, E. Dibildox-Alvarado, M.A. Charó-Alonso, A. de la Peña-Gil, J.F. Toro-Vazquez, Food Biophysics. 6(3), 359–376 (2011)

    Article  Google Scholar 

  24. F. Alvarez-Mitre, J. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, J. Toro-Vazquez, Food Res. Int. 49(1), 580–587 (2012)

    Article  CAS  Google Scholar 

  25. C.D. Doan, D. Van de Walle, K. Dewettinck, A.R. Patel, J. Am. Oil Chem. Soc. 92(6), 801–811 (2015)

    Article  CAS  Google Scholar 

  26. D. Johansson, B. Bergenståhl, J. Am. Oil Chem. Soc. 72(8), 911–920 (1995)

    Article  CAS  Google Scholar 

  27. S. Martini, C.Y. Tan, S. Jana, J. Food Sci. 80(5), C989–C997 (2015)

    Article  CAS  Google Scholar 

  28. A.I. Blake, A.G. Marangoni, J. Am. Oil Chem. Soc. 91(6), 885–903 (2014)

    Article  CAS  Google Scholar 

  29. D.J. Abdallah, L. Lu, R.G. Weiss, Chem. Mater. 11(10), 2907–2911 (1999)

    Article  CAS  Google Scholar 

  30. J.C.B. Rocha, J.D. Lopes, M.C.N. Mascarenhas, D.B. Arellano, L.M.R. Guerreiro, R.L. da Cunha, Food Res. Int. 50(1), 318–323 (2013)

    Article  CAS  Google Scholar 

  31. A.I. Blake, A.G. Marangoni, Food Struct. 3, 30–34 (2015)

    Article  Google Scholar 

  32. T. Chambers, I. Ritchie, M.A. Booth, New Phytol. 77(1), 43–49 (1976)

    Article  CAS  Google Scholar 

  33. K. Koch, H.-J. Ensikat, Micron 39(7), 759–772 (2008)

    Article  CAS  Google Scholar 

  34. H. Ensikat, M. Boese, W. Mader, W. Barthlott, K. Koch, Chem. Phys. Lipids 144(1), 45–59 (2006)

    Article  CAS  Google Scholar 

  35. K. Larsson, K. Larsson, Lipids: molecular organization, physical functions and technical applications (Oily Press, Dundee, 1994)

    Google Scholar 

  36. A. Patel, M. Babaahmadifooladi, A. Lesaffer, K. Dewettinck, J. Agric. Food Chem. 63(19), 4862–4869 (2015)

    Article  CAS  Google Scholar 

  37. R. Wang, X.-Y. Liu, J. Xiong, J. Li, J. Phys. Chem. B 110(14), 7275–7280 (2006)

    Article  CAS  Google Scholar 

  38. G. Mazzanti, S.E. Guthrie, E.B. Sirota, A.G. Marangoni, S.H. Idziak, Cryst. Growth Des. 3(5), 721–725 (2003)

    Article  CAS  Google Scholar 

  39. A.P.B. Ribeiro, M.H. Masuchi, E.K. Miyasaki, et al., J. Food Sci. Technol. 52(7), 3925–3946 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Authors want to thank Dr. Ashok R. Patel for his scientific inputs. Vandemoortele is recognized for its financial help in the acquisition of the Leica polarized light microscope and the scientific input. Hercules foundation is recognized for its financial support in the acquisition of the scanning electron microscope JEOL JSM-7100F equipped with cryo-transfer system Quorum PP3000T (grant number AUGE-09-029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi Diem Doan or Tom Rimaux.

Additional information

Highlights

• High-melting sunflower wax (mainly long-chain wax esters) and low-melting berry wax (mainly short-chain fatty acids) were compared.

• Wax esters contribute to platelet crystals in sunflower wax oleogel.

• Short-chain fatty acids give rise to tiny microplatelet crystals in berry wax oleogel.

• Polymorphic transition appears in both sunflower wax and berry wax oleogels during storage at 5 °C.

• Re-organization in molecular structure of berry wax oleogel results in a stronger gelation over 4 weeks at 5 °C.

Electronic supplementary material

ESM 1

(DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, C.D., Tavernier, I., Sintang, M.D.B. et al. Crystallization and Gelation Behavior of Low- and High Melting Waxes in Rice Bran Oil: a Case-Study on Berry Wax and Sunflower Wax. Food Biophysics 12, 97–108 (2017). https://doi.org/10.1007/s11483-016-9467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9467-y

Keywords

Navigation