Skip to main content
Log in

Effect of Carbonation of Supersaturated Lactose Solution on Crystallisation Behaviour of Alpha-Lactose Monohydrate

Food Biophysics Aims and scope Submit manuscript

Abstract

The effect of dissolution of carbon dioxide (CO2) in lactose solution on the particle size, morphology, yield and densities of crystallized alpha-lactose monohydrate (α-LM) was investigated. Dry ice was added into a 50% w/w aqueous lactose solution (relative supersaturation SR = 4.55) at 0, 500 and 1000 ppm in batch mode and closed system at 40°C. Agitation and sonication then were applied to the carbonated aqueous lactose solution for creating CO2 bubbles to assist the nucleation process. For ultrasound (US) treatment, the aqueous lactose solution was sonicated at 50% amplitude for 1 min. All samples (CO2 + agitation and CO2 + US + agitation) were then agitated for 3 h at 25°C upon crystallisation process. Regardless of mechanical treatment, prior addition of CO2 at higher concentration tended to induce formation of smaller crystals with triangular and trapezoidal-shaped morphologies whilst non-carbonated lactose favoured generation of bigger tomahawk-shaped crystals. A remarkable increase in α-LM yield was found in 1000 ppm carbonated sample prior to sonication as against non-carbonated counterpart. The crystal size d(0.5) was also found significantly lower (~32 μm) for the carbonated sample as compared to those of non-carbonated sample (~56 μm). The bulk and true densities of α-LM powder obtained were independent on CO2 concentration added but addition of 1000 ppm CO2 affected the packed densities of α-LM. Carbonation of lactose solution can be considered as an additional tool to manipulate crystal size, shape and yield of α-LM that may suitable for pharmaceutical and food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R. S. Dhumal, S. V. Biradar, A. R. Paradkar, P. York, Pharm Res-Dord 25(12), 2835–2844 (2008)

    Article  CAS  Google Scholar 

  2. P. Parimaladevi, K. Srinivasan, Int. Dairy J. 39(2), 301–311 (2014)

    Article  CAS  Google Scholar 

  3. S. Y. Wong, R. W. Hartel, J. Food Sci. 79(3), R257–R272 (2014)

    Article  CAS  Google Scholar 

  4. S. Garnier, S. Petit, G. Coquerel, J. Cryst. Growth 234(1), 207–219 (2002)

    Article  CAS  Google Scholar 

  5. H. G. Brittain, S. J. Bogdanowich, D. E. Bugay, J. Devincentis, G. Lewen, A. W. Newman, Pharm Res-Dord 8(8), 963–973 (1991)

    Article  CAS  Google Scholar 

  6. P. Parimaladevi, K. Srinivasan, J. Food Eng. 151, 1–6 (2015)

    Article  CAS  Google Scholar 

  7. T. Norton, A. Delgado, E. Hogan, P. Grace, D. W. Sun, J. Food Eng. 91(2), 260–268 (2009)

    Article  Google Scholar 

  8. S. L. Raghavan, R. I. Ristic, D. B. Sheen, J. N. Sherwood, J. Pharm. Sci. 90(7), 823–832 (2001)

    Article  CAS  Google Scholar 

  9. Z. Zhang, D. W. Sun, Z. W. Zhu, L. N. Cheng, Compr. Rev. Food Sci. F 14(4), 303–316 (2015)

    Article  CAS  Google Scholar 

  10. M. G. Ganzle, G. Haase, P. Jelen, Int. Dairy J. 18(7), 685–694 (2008)

    Article  Google Scholar 

  11. P. R. Gogate, A. B. Pandit, in Ultrasound Technologies for Food and Bioprocessing, ed by H. Feng, G. V. Barbosa-Canovas, J. Weiss. (Springer Science + Business Media, New York, 2011), p. 467

    Chapter  Google Scholar 

  12. R. W. Hartel, Crystallization in foods (Aspen Publishers, Gaithersburg, Md, 2001)

    Google Scholar 

  13. P. Parimaladevi, K. Srinivasan, J. Cryst. Growth 401, 252–259 (2014)

    Article  CAS  Google Scholar 

  14. G. Ruecroft, D. Hipkiss, T. Ly, N. Maxted, P. W. Cains, Org. Process. Res. Dev. 9(6), 923–932 (2005)

    Article  CAS  Google Scholar 

  15. K. Wohgemuth, A. Kordylla, F. Ruether, G. Schembecker, Chem. Eng. Sci. 64(19), 4155–4163 (2009)

    Article  Google Scholar 

  16. S. L. Hem, Ultrasonics 5(4), 202–207 (1067)

    Article  Google Scholar 

  17. C. Virone, H. J. M. Kramer, G. M. van Rosmalen, A. H. Stoop, T. W. Bakker, J. Cryst. Growth 294(1), 9–15 (2006)

    Article  CAS  Google Scholar 

  18. X. Zhang, T. Inada, A. Tezuka, Ultrason. Sonochem. 10(2), 71–76 (2003)

    Article  Google Scholar 

  19. F. Hu, D. W. Sun, W. H. Gao, Z. H. Zhang, X. A. Zeng, Z. Han, Innovative Food Sci. Emerg. 20, 161–166 (2013)

    Article  CAS  Google Scholar 

  20. B.-G. Xua, M. Zhang, B. Bhandari, J. Sun, Z. X. Gao, Innovative Food Sci. Emerg. 35, 194-203 (2016)

  21. X. M. Zeng, G. P. Martin, C. Marriott, J. Pritchard, J. Pharm. Pharmacol. 52(6), 633–643 (2000)

    Article  CAS  Google Scholar 

  22. R. A. Visser, Neth. Milk Dairy J. 36(3), 167 (1982)

    CAS  Google Scholar 

  23. C. H. Wang, S. Y. Lin, Acta Mech. Sinica 46(6), 1050–1058 (2010)

    Google Scholar 

  24. D. R. Helman, D. B. Lund, Handbook of food engineering (CRC Press/Taylor & Francise, Boca Raton, 2007)

    Google Scholar 

  25. X. M. Zeng, G. P. Martin, S. K. Tee, A. Abu Ghoush, C. Marriott, Int. J. Pharm. 182(2), 133–144 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhesh Bhandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xun, A., Truong, T. & Bhandari, B. Effect of Carbonation of Supersaturated Lactose Solution on Crystallisation Behaviour of Alpha-Lactose Monohydrate. Food Biophysics 12, 52–59 (2017). https://doi.org/10.1007/s11483-016-9462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9462-3

Keywords

Navigation