Skip to main content
Log in

Influence of Linoleic Acid-Induced Oxidative Modification on Gel Properties of Myofibrillar Protein from Silver Carp (Hypophthalmichthys molitrix) Muscle

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Oxidation extent of myofibrillar protein (MP) from silver carp (Hypophthalmichthys molitrix) was affected by the content and type of lipid peroxidation (LPO) products. Oxidized linoleic acid (OLA) was selected as a main representative of lipid peroxidation to investigate the effects of oxidative modification of LPO products on MP structure. Structural changes of the oxidized myofibrillar protein were evaluated by the contents of carbonyl and total sulfhydryls, surface hydrophobicity, SDS-PAGE and Fourier transform infrared spectroscopy. Heating procedure was also applied for further evaluation of gelling properties. The results from SDS-PAGE indicated that aggregation and denaturation of myosin occurred in the oxidized system. The presence of OLA intensified oxidation-initiated loss of a-helix conformation as well as tertiary structure of MP. With the addition of OLA concentration less than 3 mM, a remarkably enhanced gelling capacity of MP was observed. While the excessive covalent bond (OLA > 5 mM) could lead to the breakage of protein-protein bonds, causing the collapse of the gel structure. The gelation procedure induced by OLA involved simultaneous protein oxidation and internal cross-linking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Qiu, W. Xia, Q. Jiang, Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure. Eur Food Res and Technol. 238, 753–761 (2014)

    Article  CAS  Google Scholar 

  2. G. K. Tanaji, B. Soottawat, Combining effect of microbial transglutaminase and bambara groundnut protein isolate on gel properties of surimi from sardine (Sardinella albella). Food Biophys. 51, 146–155 (2015)

    Google Scholar 

  3. H.-H. Chen, Thermal gelation behaviors of surimi protein mixed with Hydroxypropylmethylcellulose. Fisheries Sci. 72, 679–685 (2006)

    Article  CAS  Google Scholar 

  4. D. Sun X., A. Holley R., Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr Rev Food Sci. 10, 33–51 (2011)

    Article  Google Scholar 

  5. D. Park, Y. L. Xiong, A. L. Alderton, T. Ooizumi, Biochemical changes in myofibrillar protein isolates exposed to three oxidizing systems. J. Agric. Food Chem 12, 4445–4451 (2006)

    Article  Google Scholar 

  6. M. N. Lund, M. Heinonen, C. P. Baron, M. Estévez, Protein oxidation in muscle foods: A review. Molecular Nutri & Food Res. 55, 83–95 (2011)

    Article  CAS  Google Scholar 

  7. Y. L. Xiong, D. Park, T. Ooizumi, Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments. J. Agric. Food Chem. 57, 153–159 (2008)

    Article  Google Scholar 

  8. C. Li, Y. L. Xiong, J. Chen, Protein oxidation at different salt concentrations affects the cross-linking and gelation of pork myofibrillar protein catalyzed by microbial transglutaminase. J. Food Sci 78, C823–C831 (2013)

    Article  CAS  Google Scholar 

  9. W. Sun, F. Zhou, D.-W. Sun, M. Zhao, Effect of oxidation on the emulsifying properties of myofibrillar proteins. Food Bioprocess Tech. 6, 1703–1712 (2012)

    Article  Google Scholar 

  10. M. N. Lund, M. Heinonen, C. P. Baron, M. Estévez, Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res 55, 83–95 (2011)

    Article  CAS  Google Scholar 

  11. M. Estevez, Protein carbonyls in meat systems: a review. Meat Sci. 89, 259–279 (2011)

    Article  CAS  Google Scholar 

  12. H. Esterbauer, R. J. Schaur, H. Zollner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology. Med 11, 81–128 (1991)

    Article  CAS  Google Scholar 

  13. V. A. Tironi, M. C. Tomas, M. C. Anon, Structural and functional changes in myofibrillar proteins of sea salmon (Pseudopercis semifasciata) by interaction with malonaldehyde (RI). J. Food Sci. 67, 930–935 (2002)

    Article  CAS  Google Scholar 

  14. V. Fuentes, M. Estevez, J. Ventanas, S. Ventanas, Impact of lipid content and composition on lipid oxidation and protein carbonylation in experimental fermented sausages. Food Chem. 147, 70–77 (2014)

    Article  CAS  Google Scholar 

  15. R. L. Levine, D. Garland, C. N. Oliver, A. Amici, I. Clement, A. G. Lenz, B. W. Ahn, S. Shaltiel, E. R. Stadtman, Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186, 464–542 (1990)

    Article  CAS  Google Scholar 

  16. I. Chelh, P. Gatellier, V. Santé-Lhoutellier, Technical note: A simplified procedure for myofibril hydrophobicity determination. Meat Sci. 4, 681–683 (2006)

    Article  Google Scholar 

  17. X. Xia, B. Kong, Y. Xiong, Y. Ren, Decreased gelling and emulsifying properties of myofibrillar protein from repeatedly frozen-thawed porcine longissimus muscle are due to protein denaturation and susceptibility to aggregation. Meat Sci. 85, 481–486 (2010)

    Article  CAS  Google Scholar 

  18. M. Flores, J. M. Barat, M. C. Aristoy, M. M. Peris, R. Grau, F. Toldra, Accelerated processing of dry-cured ham. Part 2. Influence of brine thawing/salting operation on proteolysis and sensory acceptability. Meat Sci 72, 766–772 (2006)

    Article  CAS  Google Scholar 

  19. W. Sun, F. Zhou, D.-W. Sun, M. Zhao, Effect of Oxidation on the Emulsifying Properties of Myofibrillar Proteins. Food Bioprocess Tech. 6, 1703–1712 (2012)

    Article  Google Scholar 

  20. F. Zhou, M. Zhao, G. Su, C. Cui, W. Sun, Gelation of salted myofibrillar protein under malondialdehyde-induced oxidative stress. Food Hydrocoll. 40, 153–162 (2014)

    Article  CAS  Google Scholar 

  21. E. R. Stadtman, Protein oxidation and aging. Free Radical Res. 40, 1250–1258 (2006)

    Article  CAS  Google Scholar 

  22. J. Kanner, Oxidative processes in meat and meat products: Quality implications*1. Meat Sci. 1, 169–189 (1994)

    Article  Google Scholar 

  23. V. Sante-Lhoutellier, T. Astruc, Marinova. P, Greve. E, Gatellier P, Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. J. Agric. Food Chem. 56, 1488–1494 (2008)

    Article  CAS  Google Scholar 

  24. K. J. Davies, Degradation of oxidized proteins by the 20S proteasome. Biochimie. 83, 301–310 (2001)

    Article  CAS  Google Scholar 

  25. C. Li, Y. L. Xiong, J. Chen, Oxidation-induced unfolding facilitates myosin cross-linking in myofibrillar protein by microbial transglutaminase. J. Agric. Food Chem 60, 8020–8027 (2012)

    Article  CAS  Google Scholar 

  26. A. Promeyrat, P. Gatellier, B. Lebret, K. Kajak-Siemaszko, L. Aubry, V. Santé-Lhoutellier, Evaluation of protein aggregation in cooked meat. Food Chem. 121, 412–417 (2010)

    Article  CAS  Google Scholar 

  27. Y. Cao, Y. L. Xiong, Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chem 180, 235–243 (2015)

    Article  CAS  Google Scholar 

  28. S. Traore, L. Aubry, P. Gatellier, W. Przybylski, D. Jaworska, K. Kajak-Siemaszko, Effect of heat treatment on protein oxidation in pig meat. Meat Sci. 91, 14–21 (2012)

    Article  CAS  Google Scholar 

  29. E. Saguer, P. Alvarez, J. Sedman, A. Ismail, Study of the denaturation/ aggregation behaviour of whole porcine plasma and its protein fractions during heating under acidic pH by variable-temperature FTIR spectroscopy. Food Hydrocoll. 33, 402–414 (2013)

    Article  CAS  Google Scholar 

  30. U. Böcker, R. Ofstad, H. C. Bertram, B. Egelandsdal, A. Kohler, Saltinduced changes in pork myofibrillar tissue investigated by FT-IR microspectroscopy and light microscopy. J. Agric. Food Chem 54, 6733–6740 (2006)

    Article  Google Scholar 

  31. Z. Y. Ju, A. Kilara, Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant. J. Agric. Food Chem. 46, 1830–1835 (1998)

    Article  CAS  Google Scholar 

  32. H. C. Bertram, A. Kohler, U. Böcker, R. Ofstad, H. J. Andersen, Heatinduced changes in myofibrillar protein structures and myowater of two pork qualities. A combined FT-IR spectroscopy and low-field NMR relaxometry study. J. Agric. Food Chem 54, 1740–1746 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support by Jiangsu Province (China) “Collaborative Innovation Center for Food Safety and Quality Control”Industry Development Program, and Jiangsu Province (China) Infrastructure Project (Contract No. BM2014051) which have enabled us to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, M., Fang, Z. et al. Influence of Linoleic Acid-Induced Oxidative Modification on Gel Properties of Myofibrillar Protein from Silver Carp (Hypophthalmichthys molitrix) Muscle. Food Biophysics 11, 266–274 (2016). https://doi.org/10.1007/s11483-016-9438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9438-3

Keywords

Navigation