Skip to main content
Log in

Antioxidant Properties of Kanakugiol Revealed Through the Hydrogen Atom Transfer, Electron Transfer and M2+ (M2+ = Cu(II) or Co(II) Ion) Coordination Ability Mechanisms. A DFT Study In Vacuo and in Solution

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

DFT studies on the conformational and antioxidant properties of kanakugiol were performed to investigate factors that contribute to its conformational preferences and to elucidate its antioxidant properties and mechanisms. The antioxidant activity has been considered through the ability of kanakugiol to scavenge free radical species and through its ability to chelate metal ions. The antiradical activity was performed using the B3LYP and the B3P86 and by using both the 6-31+G(d,p) and the 6-311+G(d,p) basis sets. The gas-phase interaction of kanakugiol with Cu (II) and Co (II) ions were studied by means of G96LYP/6-311+G(3df,2p)//G96LYP/6-31G(d) calculations. The results show that the preferred neutral conformers are stabilised by the presence of intramolecular hydrogen bonds (IHBs) and the orientation of both the OCH3 groups and the prop-2-en-1-one chain. The neutral and cationic radical species are stabilised by both IHBs and the spin density delocalisation of the unpaired electron. A comparison of the OH bond dissociation enthalpy and the ionisation potential values across media suggests that each parameter has the lowest value in acetonitrile and highest value in vacuo, which indicates that kanakugiol may have an optimal tendency to scavenge radical species in polar aprotic media. Among the metal ion complexes, the preferred geometry is dependent on the media; in vacuo the preferred complex is one in which the metal ion is dentated to the π system of the aromatic ring while in water solution, the preferred complex is one in which the metal ion is dentated between O atoms. An estimation of metal ion affinity in aqueous solution shows a remarkable decrease with respect to the results in vacuo. The charge on metal ions decreases on interaction with kanakugiol, suggesting that both metal ions are reduced while kanakugiol is oxidised. An analysis of the spin density distribution and the electron delocalisation index elucidates the difference in the type of bonding between the Co(II) and Cu(II) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.K. Ko, M.-C. Kang, Y.-J. Jin, H.-M. Choi, B.-S. Kim, J.-H. Han, G.-O. Kim, N.H. Lee, Bull. Kor. Chem. Soc. 31, 739 (2010)

    Article  CAS  Google Scholar 

  2. S.M. Lee, S.H. Baek, C.H. Lee, H.B. Lee, Y.H. Kho, Nat. Prod. Sci. 8, 100 (2002)

    CAS  Google Scholar 

  3. Y.W. Leong, L.J. Harrison, G.J. Bennett, A.A. Kadir, J.D. Konnolly, Phytochemistry 47, 891 (1998)

    Article  CAS  Google Scholar 

  4. Y.W. Leong, L.J. Harrison, A.A. Kadir, J.D. Konnolly, Phytochemistry 49, 2141 (1998)

    Article  CAS  Google Scholar 

  5. H.H. Lee, Tetrahedron Lett. 40, 4243 (1968)

    Article  Google Scholar 

  6. K. Ichino, H. Tanaka, K. Ito, T. Tanaka, M. Mizuno, J. Nat. Prod. 51, 915 (1988)

    Article  CAS  Google Scholar 

  7. H.M. Oh, S.K. Choi, J.M. Lee, S.K. Lee, H.Y. Kim, D.C. Han, K.M. Kim, K.H. Son, B.M. Kwon, Bioorg. Med. Chem. 13, 6182 (2005)

    Article  CAS  Google Scholar 

  8. Y.H. Choi, S.Y. Kwon, J.H. Kim, N.I. Baek, G.J. Choi, K.Y. Cho, B.M. Lee, J. Kor. Soc. Agric. Chem. Biotechnol. 46, 150 (2003)

    CAS  Google Scholar 

  9. S.Y. Wang, X.Y. Lan, J.H. Xiao, J.C. Yang, Y.T. Kao, S.T. Chang, Phytother. Res. 22, 213 (2008)

    Article  CAS  Google Scholar 

  10. E.I. Hwang, Y.M. Lee, S.M. Lee, W.H. Yeo, J.S. Moon, T.H. Kang, K.D. Park, S.U. Kim, Planta Med. 73, 679 (2007)

    Article  CAS  Google Scholar 

  11. R.G. Batey, S.J. Salmond, A. Bensoussan, Curr. Gastroenterol. Rep. 7, 63 (2005)

    Article  Google Scholar 

  12. K.J.S. Kumar, J.-W. Liao, J.-H. Xiao, M.G. Vani, S.-Y. Wang, Toxicol. in Vitro 26, 700 (2012)

    Article  Google Scholar 

  13. W.-C. Chen, S.-Y. Wang, C.-C. Chiu, C.-K. Tseng, C.-K. Lin, H.-C. Wang, J.-C. Lee, Antimicrob. Agents Chemother. 57, 1180 (2013)

    Article  CAS  Google Scholar 

  14. M.M. Kabanda, V.T. Tran, K.M. Seema, K.R.N. Serobatse, T.J. Tsiepe, Q.T. Tran, E.E. Ebenso, Mol. Phys. (2014). doi:10.1080/00268976.2014.969343

    Google Scholar 

  15. D. Kozlowski, P. Trouillas, C. Calliste, P. Marsal, R. Lazzaroni, J.-L. Duroux, J. Phys. Chem. A 111, 1138 (2007)

    Article  CAS  Google Scholar 

  16. Y.Z. Rong, Z.W. Wang, B. Zhao, Food Biophys. 8, 250 (2013)

    Article  Google Scholar 

  17. L. Mammino, M.M. Kabanda, J. Phys. Chem. A 113, 15064 (2009)

    Article  CAS  Google Scholar 

  18. L. Mammino, M.M. Kabanda, J. Mol. Struct. (THEOCHEM) 901, 210 (2009)

    Article  CAS  Google Scholar 

  19. M.M. Kabanda, L. Mammino, Int. J. Quantum Chem. 112, 519 (2012)

    Article  CAS  Google Scholar 

  20. L. Mammino, M.M. Kabanda, Int. J. Quantum Chem. 111, 3701 (2011)

    CAS  Google Scholar 

  21. L. Mammino, M.M. Kabanda, Int. J. Quantum Chem. 110, 2378 (2010)

    Article  CAS  Google Scholar 

  22. L. Mammino, M.M. Kabanda, Int. J. Quantum Chem. 110, 595 (2010)

    Article  CAS  Google Scholar 

  23. L. Mammino, M.M. Kabanda, Int. J. Quantum Chem. 108, 1772 (2008)

    Article  CAS  Google Scholar 

  24. L. Mammino, M.M. Kabanda, J. Mol. Struct. (THEOCHEM) 852, 36 (2008)

    Article  CAS  Google Scholar 

  25. L. Mammino, M.M. Kabanda, J. Mol. Struct. (THEOCHEM) 805, 39 (2007)

    Article  CAS  Google Scholar 

  26. M.M. Kabanda, E.E. Ebenso, J. Phys. Chem. A 117, 1583 (2013)

    Article  CAS  Google Scholar 

  27. L. Mammino, M.M. Kabanda, Mol. Simul. 39, 1 (2013)

    Article  CAS  Google Scholar 

  28. M.M. Kabanda, E.E. Ebenso, Mol. Simul. 40, 1131 (2014)

    Article  CAS  Google Scholar 

  29. M.M. Kabanda, E.E. Ebenso, J. Theor. Comput. Chem. 12, 1350070 (2013)

    Article  Google Scholar 

  30. R. Amorati, M. Lucarini, V. Mugnaini, G.F. Pedulli, J. Org. Chem. 68, 5198 (2003)

    Article  CAS  Google Scholar 

  31. M.V. Bel’kov, G.A. Ksendzova, P.V. Kuzovkov, G.I. Polozov, I.V. Skornyakov, V.L. Sorokin, G.B. Tolstorozhev, O.I. Shadyro, J. Appl. Spectrosc. 74, 635 (2007)

    Article  Google Scholar 

  32. M.M. Kabanda, Chem. Res. Toxicol. 25, 2153 (2012)

    Article  CAS  Google Scholar 

  33. H.M. Mwangi, J.V.D. Westhuizen, J. Marnewick, W.T. Mabusela, M.M. Kabanda, E.E. Ebenso, Free Radicals Antioxid. 3, S1 (2013)

    Article  CAS  Google Scholar 

  34. M.M. Kabanda, L. Mammino, L.C. Murulana, H.M. Mwangi, W.T. Mabusela, Int. J. Food Prop. 18, 149 (2015)

    Article  CAS  Google Scholar 

  35. M. Leopoldini, I.P. Pitarch, N. Russo, M. Toscano, J. Phys. Chem. A 108, 92 (2004)

    Article  CAS  Google Scholar 

  36. M. Leopoldini, T. Marino, N. Russo, M. Toscano, J. Phys. Chem. A 108, 4916 (2004)

    Article  CAS  Google Scholar 

  37. M. Leopoldini, T. Marino, N. Russo, M. Toscano, Theor. Chem. Acc. 111, 210 (2004)

    Article  CAS  Google Scholar 

  38. Y.Z. Rong, Z.W. Wang, B. Zhao, Food Biophys. 8, 90 (2013)

    Article  Google Scholar 

  39. E. Klein, V. Lukeš, J. Mol. Struct. (THEOCHEM) 805, 153 (2007)

    Article  CAS  Google Scholar 

  40. M. Musialik, G. Litwinienko, Org. Lett. 7, 4951 (2005)

    Article  CAS  Google Scholar 

  41. J.S. Wright, E.R. Johnson, G.A. Di Labio, J. Am. Chem. Soc. 123, 1173 (2001)

    Article  CAS  Google Scholar 

  42. D. Huang, B. Ou, R.L. Prior, J. Agric. Food Chem. 53, 1841 (2005)

    Article  CAS  Google Scholar 

  43. R.L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53, 4290 (2005)

    Article  CAS  Google Scholar 

  44. K.S. Kumar, R. Kumaresan, Mol. Simul. 39, 72 (2013)

    Article  Google Scholar 

  45. M. Leopoldini, N. Russo, S. Chiodo, M. Toscano, J. Agric. Food Chem. 54, 6343 (2006)

    Article  CAS  Google Scholar 

  46. S. Alcaro, S.G. Chiodo, M. Leopoldini, F. Ortuso, J. Chem. Inf. Model. 53, 66 (2013)

    Article  CAS  Google Scholar 

  47. H. Fan, T. Zheng, Y. Chen, G.-Z. Yang, Pharmacogn. Mag. 8, 98 (2012)

    Article  CAS  Google Scholar 

  48. M.M. Kabanda, L. Mammino, Int. J. Quantum Chem. 112, 3691 (2012)

    Article  CAS  Google Scholar 

  49. L. Mammino, M.M. Kabanda, Int. J. Quantum Chem. 112, 2650 (2012)

    Article  CAS  Google Scholar 

  50. A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113, 6378 (2009)

    Article  CAS  Google Scholar 

  51. A.M. Lamsabhi, M. Alcamí, O. Mó, M. Yáñez, J. Phys. Chem. A 11, 1943 (2006)

    Article  Google Scholar 

  52. A.M. Lamsabhi, M. Alcamí, O. Mó, M. Yáñez, ChemPhysChem 4, 1011 (2003)

    Article  CAS  Google Scholar 

  53. A.M. Lamsabhi, M. Alcamí, O. Mó, M. Yáñez, J. Tortajada, J.-Y. Salpin, ChemPhysChem 8, 181 (2007)

    Article  CAS  Google Scholar 

  54. A.M. Lamsabhi, M. Alcamí, O. Mó, M. Yáñez, J. Tortajada, ChemPhysChem 5, 1871 (2004)

    Article  CAS  Google Scholar 

  55. G. Alagona, C. Ghio, J. Phys. Chem. A 113, 15206 (2009)

    Article  CAS  Google Scholar 

  56. G. Alagona, C. Ghio, Phys. Chem. Chem. Phys. 11, 776 (2009)

    Article  CAS  Google Scholar 

  57. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision C.01 (Gaussian, Inc, Wallingford CT, 2009)

    Google Scholar 

  58. J.P. Foster, A.E. Reed, J.E. Carpenter, F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)

    Article  CAS  Google Scholar 

  59. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  CAS  Google Scholar 

  60. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)

    Article  CAS  Google Scholar 

  61. J.C. Hargis, S.L. Vankayala, J.K. White, H.L. Woodcock, J. Chem. Theory Comput. 10, 855 (2014)

    Article  CAS  Google Scholar 

  62. T.A. Keith, AIMAll (Version 14.06.21) (TK Gristmill Software, Overland Park KS, USA, 2014)

    Google Scholar 

  63. G.R. Desiraju, Acc. Chem. Res. 24, 290 (1991)

    Article  CAS  Google Scholar 

  64. T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002)

    Article  CAS  Google Scholar 

  65. J.N. Schrauben, M. Cattaneo, T.C. Day, A.L. Tenderholt, J.M. Mayer, J. Am. Chem. Soc. 134, 16635 (2012)

    Article  CAS  Google Scholar 

  66. J.-M. Savéant, C. Tard, J. Am. Chem. Soc. 136, 8907 (2014)

    Article  Google Scholar 

  67. I.J. Rhile, T.F. Markle, H. Nagao, A.G. Di Pasquale, O.P. Lam, M.A.J. Am, Chem. Soc. 128, 6075 (2006)

    Article  CAS  Google Scholar 

  68. E. Osorio, E.G. Pérez, C. Areche, L.M. Ruiz, B.K. Cassels, E. Flórez, W. Tiznado, J. Mol. Model. 19, 2165 (2013)

    Article  CAS  Google Scholar 

  69. P.R. Varadwaj, A. Vanadwaj, H.M. Marques, J. Phys. Chem. A 115, 5592 (2011)

    Article  CAS  Google Scholar 

  70. J.A. Platts, S.T. Howard, B.R.F. Bracke, J. Am. Chem. Soc. 118, 2726 (1996)

    Article  CAS  Google Scholar 

  71. J.L. Perez-Lustres, M. Bräuer, M. Mosquera, T. Clark, Phys. Chem. Chem. Phys. 3, 3569 (2001)

    Article  Google Scholar 

  72. U. Gogoi, A.K. Guha, A.K. Phukan, Organometallics 30, 5991 (2011)

    Article  CAS  Google Scholar 

  73. R.F.W. Bader, C.F. Matta, Inorg. Chem. 40, 5603 (2001)

    Article  CAS  Google Scholar 

  74. G. Gervasio, R. Bianchi, D. Marabello, Chem. Phys. Lett. 387, 481 (2004)

    Article  CAS  Google Scholar 

  75. M.M. Kabanda, V.T. Tran, T.Q. Tran, E.E. Ebenso, Comput. Theor. Chem. 1046, 30 (2014)

    Article  CAS  Google Scholar 

  76. L. Feng, F.-Q. Bai, Y. Wu, H.-X. Zhang, Mol. Phys. 109, 645 (2011)

    Article  CAS  Google Scholar 

  77. P.R. Varadwaj, H.M. Marques, Phys. Chem. Chem. Phys. 12, 2126 (2010)

    Article  CAS  Google Scholar 

  78. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117, 5529 (2002)

    Article  CAS  Google Scholar 

  79. S. Jenkins, I. Morrison, Chem. Phys. Lett. 117, 97 (2000)

    Article  Google Scholar 

  80. H. Chevreau, C. Martinsky, A. Sevin, C. Minot, B. Silvi, New J. Chem. 27, 1049 (2003)

    Article  CAS  Google Scholar 

  81. B. Bräuer, T. Rüffer, R. Kirmse, J. Griebel, F. Weigend, G. Salvan, Polyhedron 26, 1773 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the referee for carefully reading the manuscript and suggesting several improvements. Tshepiso. J. Tsiepe and Kemoabetswe. R. N. Serobatse are grateful to Sasol Inzalo Foundation (South Africa), and the South African National Research Foundation (NRF) for the NRF and Sasol Inzalo Foundation Fellowship (Honours degree) which has enabled them to take part in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mwadham M. Kabanda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1006 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiepe, T.J., Kabanda, M.M. & Serobatse, K.R.N. Antioxidant Properties of Kanakugiol Revealed Through the Hydrogen Atom Transfer, Electron Transfer and M2+ (M2+ = Cu(II) or Co(II) Ion) Coordination Ability Mechanisms. A DFT Study In Vacuo and in Solution. Food Biophysics 10, 342–359 (2015). https://doi.org/10.1007/s11483-015-9397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9397-0

Keywords

Navigation