Skip to main content
Log in

Ultra Small Angle X-Ray Scattering for Pure Tristearin and Tripalmitin: Model Predictions and Experimental Results

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Computer simulations in a 3-dimensional cubic space were carried out to (a) model the formation of grains of the triacylglycerols (TAGs), pure tristearin (SSS) and tripalmitin (PPP), and (b) compute structure functions, S(q), of the resulting grain boundaries. It was found that the generally-accepted process of grain creation leading to the formation of grain boundaries yielded results in accord with experimental data while an alternative procedure which created grain boundaries in an ad hoc way, did not. For the models, it was found that S(q) exhibited a slope of approximately −2 for higher q-values and a slope of approximately −3 for lower values of q. Broad localized peaks were observed at q ≈ 0.32u − 1, where u indicates the units used to define the simulation space. The localized peaks, indicating the characteristic dimensions of the grain boundaries, predict that this size is d ≈ 11 u. Experimental studies were carried out on pure SSS and PPP, using Ultra Small Angle X-Ray Scattering (USAXS), in the region 1 × 10−4 Å−1 < q < 6 10−2 Å−1 A section of the scattering profiles observed were interpreted in terms of the surface fractal morphology of grain boundaries surrounding the nano-scale voids - nanovoids - in the material. It was observed that the average volume of the nanovoids were characterized by a radius of gyration R g1 of about 370 ± 20 nm for SSS and 437 ± 28 nm for PPP when the Unified Fit software was used. Not surprisingly, the surface fractal dimension, D s , associated with R g1 was similar for both SSS and PPP, giving D s(sss) ~ 2.1 and D s(ppp) ~ 2.2. This is in accord with an interpretation that the nanovoid boundaries are rough 2-dimensional surfaces. A slope of approximately −3.0 was observed for the region of 1 × 10−4 Å−1 < q < 4 × 10−4 Å−1 for both materials, indicating that the distribution of the grain boundary surfaces is random. These results are in complete accord with the predictions of the models. We found that 1 μ ≈ 500 Å so that a model nanovoid size of ∼ 11u is in accord with the sizes deduced from radii of gyration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  1. N.C. Acevedo, A.G. Marangoni, Cryst. Growth Des. 10, 3327 (2010)

    Article  CAS  Google Scholar 

  2. T.S. Awad, M.A. Rogers, A.G. Marangoni, J. Phys. Chem. B 108, 171 (2004)

    Article  CAS  Google Scholar 

  3. Y. Shi, B. Liang, R.W. Hartel, J. Am. Chem. Soc. 82, 399 (2005)

    CAS  Google Scholar 

  4. D. Rousseau, A.G. Marangoni, K.R. Jeffrey, J. Am. Oil Chem. Soc. 75, 1833 (1998)

    Article  CAS  Google Scholar 

  5. H. Delacroix, T. Gulik-Krzywicki, P. Mariani, V. Luzzati, J Mol Boil 229, 526 (1993)

    Article  CAS  Google Scholar 

  6. B.E. Brooker, Trends Food Sci. Technol. 1, 100 (1990)

    Article  Google Scholar 

  7. W. Buchheim, Food Microstruct. 1, 189 (1982)

    CAS  Google Scholar 

  8. I. Heertje, M. Leunis, W.J.M. van Zeyl, E. Berends, Food Microstruct. 6, 1 (1987)

    Google Scholar 

  9. A. Marangoni, D. Rousseau, J. Am. Oil Chem. Soc. 73, 991 (1996)

    Article  CAS  Google Scholar 

  10. M.L. Herrera, R.W. Hartel, J AOCS 77, 1177 (2000)

    CAS  Google Scholar 

  11. L. Wiking, V. De Graef, M. Rasmussen, K. Dewettinck, Int. Dairy J. 19, 424 (2009)

    Article  CAS  Google Scholar 

  12. I. Heertje and M. Leunis, Leb. U.-Technol 30, 141 (1997).

  13. A. G. Marangoni, N. Acevedo, F. Maleky, E. Co, F. Peyronel, G. Q. B. Mazzanti, and D. A. Pink, Soft Matter 8, 1275 (2012).

  14. S. Marty, A.G. Marangoni, Cryst. Growth Des. 9, 4415 (2009)

    Article  CAS  Google Scholar 

  15. F. Maleky, A.G. Marangoni, Soft Matter 7, 6012 (2011)

    Article  CAS  Google Scholar 

  16. T. Viscek, Fractal growth phenomena (World Scientific, Singapore, 1999)

    Google Scholar 

  17. D.A. Pink, B. Quinn, F. Peyronel, A.G. Marangoni, J. Appl. Phys. 114, 234901 (2013)

    Article  Google Scholar 

  18. F. Peyronel, J. Ilavsky, G. Mazzanti, A.G. Marangoni, D.A. Pink, J. Appl. Phys. 114, 234902 (2013)

    Article  Google Scholar 

  19. C. S. Smith, in Met. Interfaces; a Semin. Met. Interfaces Held Dur. Thirty-Third Natl. Met. Congr. Expo., edited by A. S. for Metals (Detroit, 1952), p. 65.

  20. C. S. Smith, Trans. Met. Soc. A. I. M. E 175, 15 (1948).

  21. J. E. Burke, Trans. Met. Soc. A. I. M. E 180, 73 (1949).

  22. J.E. Burke, Trans Met Soc A I M E 188, 1324 (1950)

    CAS  Google Scholar 

  23. J.E. Burke, D. Turnbull, Prog. Met. Phys. 3, 220 (1952)

    Article  CAS  Google Scholar 

  24. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena (Elsevier Science Ltd, Oxford, 1995)

    Google Scholar 

  25. H. Natter, M. Schmelzer, M.-S. Loeffler, C.E. Krill, A. Fitch, R. Hempelmann, J. Phys. Chem. 104, 2467 (2000)

    Article  CAS  Google Scholar 

  26. A. Bacciochini, J. Ilavsky, G. Montavon, A. Denoirjean, F. Ben-ettouil, S. Valette, P. Fauchais, K. Wittmann-Teneze, Mater. Sci. Eng. A 528, 91 (2010)

    Article  Google Scholar 

  27. R. Jullien, J Phys I Fr 2, 759 (1992)

    Article  Google Scholar 

  28. J. Ilavsky, A.J. Allen, L.E. Levine, F. Zhang, P.R. Jemian, G.G. Long, J Appl Cryst 45, 1318 (2012)

    Article  CAS  Google Scholar 

  29. J. Ilavsky, P.R. Jemian, A.J. Allen, F. Zhang, L.E. Levine, G.G. Long, J Appl Cryst 42, 469 (2009)

    Article  CAS  Google Scholar 

  30. G.G. Long, P.R. Jemian, J.R. Weertman, D.R. Black, H.E. Burdette, R. Spal, J Appl Cryst 24, 30 (1991)

    Article  Google Scholar 

  31. J.A. Lake, Acta Crystallogr. 23, 191 (1967)

    Article  CAS  Google Scholar 

  32. J. Ilavsky, P.R. Jemian, J Appl Cryst 42, 347 (2009)

    Article  CAS  Google Scholar 

  33. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995)

    Article  CAS  Google Scholar 

  34. G. Beaucage, J. Appl. Crystallogr. 29, 134 (1996)

    Article  CAS  Google Scholar 

  35. B. Hammouda, J. Appl. Crystallogr. 43, 716 (2010)

    Article  CAS  Google Scholar 

  36. A. Guinier, G. Fournet, Small-angle scattering of X-rays (Wiley, New York, 1955)

    Google Scholar 

  37. R.J. Roe, Methods of X-ray and neutron scattering in polymer science (Oxford University Press, New York, 2000)

    Google Scholar 

  38. D.W. Schaefer, D. Kohls, E. Feinblum, J. Inorg. Organomet. Polym. Mater. 22, 617 (2012)

    Article  CAS  Google Scholar 

  39. H.K. Kammler, G. Beaucage, D.J. Kohls, N. Agashe, J. Ilavsky, J. Appl. Phys. 97, 54309 (2005)

    Article  Google Scholar 

  40. G. Porod, Kolloid-Z 124, 83 (1951)

    Article  CAS  Google Scholar 

  41. J.E. Martin, A.J. Hurd, J. Appl. Crystallogr. 20, 61 (1987)

    Article  CAS  Google Scholar 

  42. D.R. Baker, G. Paul, S. Sreenivasan, Phys. Rev. E. 66, 46136 (2002)

    Article  Google Scholar 

  43. R.W. Lencki, R.J. Craven, Cryst. Growth Des. 12, 4981 (2012)

    Article  CAS  Google Scholar 

  44. F. Maleky, A.K. Smith, A. Marangoni, Cryst. Growth Des. 11, 2335 (2011)

    Article  CAS  Google Scholar 

  45. D. Sen, S. Mazumder, R. Chitra, K.S. Chandrasekaran, J. Mater. Sci. 6, 909 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Jan Ilavsky (APS, Argonne) for his input. This work was supported by the Natural Sciences and Engineering Research Council of Canada and by the Atlantic Computational Excellence Network (ACEnet). ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Pink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyronel, F., Quinn, B., Marangoni, A.G. et al. Ultra Small Angle X-Ray Scattering for Pure Tristearin and Tripalmitin: Model Predictions and Experimental Results. Food Biophysics 9, 304–313 (2014). https://doi.org/10.1007/s11483-014-9365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9365-0

Keywords

Navigation