Skip to main content
Log in

Structural Study on Hen-egg Yolk High Density Lipoprotein (HDL) Granules

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Hen egg yolk’s main fractions, granules and plasma contribute to the formation and the stability of disperse systems like emulsions by constituting an interfacial film. However, yolk is still used empirically and physical properties of yolk fractions are not entirely understood. Therefore, one of the main approaches is to fractionate egg yolk in its single components and to close the lack of understanding of the molecular and structural characteristics of each fraction. As our sedimentation experiments show, separation efficiency of granules from hen egg yolk varies with changing solution pH. Under isoelectric conditions at pH 4.0, granules bind more low density lipoprotein (LDL; plasma-fraction), as atomic force microscopy reveals. We show that besides reduced electrostatic repulsion forces also structural changes of the granules support a higher incorporation of LDL-vesicle at pH 4.0. Varying amounts of lipid with pH make a structural analysis difficult by imaging techniques alone. We report on X-ray scattering experiments in reflection geometry performed on films of hen-egg granules. The observed scattering patterns provide prominent lateral distances in the film and a repeating distance from the phospholipids of the LDL vesicles. At pH 4.0 the repeating distance is larger and less diffuse compared to pH 6.5. We extracted two prominent lateral particle sizes in the HDL-granule film from two significant shoulders in the scattering functions. At pH 4.0 the obtained radii of gyration are Rg1 = 83 nm and Rg2 = 2.4 nm. At pH 6.5 we observed a significant expansion of both sizes. This indicates rougher contact areas and a stronger steric hindering for the incorporation of the LDL vesicle in the HDL-granules under native milieu conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Sirvente, V. Beaumal, C. Gaillard, L. Bialek, D. Hamm, M. Anton, J Agric Food Chem 55, 9537 (2007)

    Article  CAS  Google Scholar 

  2. V. Martinet, P. Saulnier, V. Beaumal, J.-L. Courthaudon, M. Anton, Food Colloids. Biopolymers Mater Spec Issue 31, 185 (2003)

    CAS  Google Scholar 

  3. K. Daimer, U. Kulozik, J Agric Food Chem 56, 4172 (2008)

    Article  CAS  Google Scholar 

  4. F. Guilmineau, I. Krause, U. Kulozik, J Agric Food Chem 53, 9329 (2005)

    Article  CAS  Google Scholar 

  5. R.W. Burley, W.H. Cook, Can J Biochem Physiol 39, 1295 (1961)

    Article  CAS  Google Scholar 

  6. M. Anton in Bioactive egg compounds, 1 st Edition, ed. by R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade (Springer, Berlin-Heidelberg, 1–23 (2007)

  7. C.M. Chang, W.D. Powrie, O. Fennema, J Food Sci 42, 1193 (1977)

    Article  CAS  Google Scholar 

  8. B. Chen, X. Ren, T. Neville, W.G. Jerome, D.W. Hoyt, D. Sparks, G. Ren, J. Wang, Protein Sci 18, 921 (2009)

    Article  CAS  Google Scholar 

  9. M. Anton, V. Martinet, M. Dalgalarrondo, V. Beaumal, E. David-Briand, H. Rabesona, Food Chem 83, 175 (2003)

    Article  CAS  Google Scholar 

  10. T. Hevonoja, M.O. Pentikainen, M.T. Hyvonen, P.T. Kovanen, M. Ala-Korpela, Biochimica et Biophysica Acta (BBA)-Molecular and cell biology of lipids, 1488, 189 (2000)

  11. R.J. Deckelbaum, G.G. Shipley, D.M. Small, R.S. Lees, P.K. George, Science 190, 392 (1975)

    Article  CAS  Google Scholar 

  12. R. Prassl, J Lipid Res 52, 187 (2011)

    Article  CAS  Google Scholar 

  13. L.E. Mc Bee, O.J. Cotterill, J Food Sci 44, 656 (1979)

    Article  CAS  Google Scholar 

  14. A. Balbo, K.H. Minor, C.A. Velikovsky, R.A. Mariuzza, C.B. Peterson, P. Schuck, Proc Natl Acad Sci U S A 102, 81 (2005)

    Article  CAS  Google Scholar 

  15. J. Dam, P. Schuck, Biophys J 89, 651 (2005)

    Article  CAS  Google Scholar 

  16. G.J. Howlett, A.P. Minton, G. Rivas, Anal Tech Mech 10, 430 (2006)

    CAS  Google Scholar 

  17. A. Martel, M. Burghammer, R.J. Davies, E. Di Cola, C. Vendrely, C. Riekel, J Am Chem Soc 130, 17070 (2008)

    Article  CAS  Google Scholar 

  18. C. Riekel, M. Burghammer, R. Davies, R. Gebhardt, D. Popov, in Lect. Notes Phys (Springer, Berlin Heidelberg, 2009), p. 91

    Google Scholar 

  19. T. Narayanan, Curr Opin Colloid Interface Sci 14, 409 (2009)

    Article  CAS  Google Scholar 

  20. A. Shukla, T. Narayanan, D. Zanchi, Soft Matter 5, 2884 (2009)

    Article  CAS  Google Scholar 

  21. D.C. Rau, B. Lee, V.A. Parsegian, Proc Natl Acad Sci 81, 2621 (1984)

    Article  CAS  Google Scholar 

  22. R. Gebhardt, C. Vendrely, M. Burghammer, C. Riekel, Langmuir 25, 6307 (2009)

    Article  CAS  Google Scholar 

  23. R. Gebhardt, T. Steinhauer, P. Meyer, J. Sterr, J. Perlich, U. Kulozik, Faraday Discuss 158, 77 (2012)

    Article  CAS  Google Scholar 

  24. R.P. Rand, V.A. Parsegian, Biochim Biophys Acta Rev Biomembr 988, 351 (1989)

    Article  CAS  Google Scholar 

  25. S. Leikin, V.A. Parsegian, D.C. Rau, R.P. Rand, Annu Rev Phys Chem 44, 369 (1993)

    Article  CAS  Google Scholar 

  26. S. Marčelja, N. Radić, Chem Phys Lett 42, 129 (1976)

    Article  Google Scholar 

  27. R. Matissek, F.-M. Schnepel, G. Steiner, L. Heinevetter, Nahrung 34, 286 (1990)

    Google Scholar 

  28. J. Perlich, J. Rubeck, S. Botta, R. Gehrke, S.V. Roth, M.A. Ruderer, S.M. Prams, M. Rawolle, Q. Zhong, V. Korstgens, P. Muller-Buschbaum, Rev Sci Instrum 81, 105105 (2010)

    Article  CAS  Google Scholar 

  29. Hammersley, A. (2004). The FIT2D home page. In http://www.esrf.fr/computing/scientific/FIT2D/

  30. A. Laca, B. Paredes, M. Diaz, Food Hydrocoll 24, 434 (2010)

    Article  CAS  Google Scholar 

  31. T. Strixner, U. Kulozik, J Food Eng 117, 89 (2013)

    Article  CAS  Google Scholar 

  32. J.A. Chouinard, A. Khalil, P. Vermette, Microsc Res Tech 70, 904 (2007)

    Article  CAS  Google Scholar 

  33. R. Gebhardt, Adv X-ray Anal 57, 1 (2013)

    CAS  Google Scholar 

  34. G. Holdsworth, J.B. Finean, Chem Phys Lipids 9, 217 (1972)

    Article  CAS  Google Scholar 

  35. A.G. Marangoni, S.H.J. Idziak, C. Vega, H. Batte, M. Ollivon, P.S. Jantzi, J.W.E. Rush, Soft Matter 3, 183 (2007)

    Article  CAS  Google Scholar 

  36. D. Grasso, K. Subramaniam, B. Butkus, K. Strevett, J. Bergendahl, Rev Environ Sci Biotechnol 1, 17 (2002)

    Article  CAS  Google Scholar 

  37. C.J. van Oss, J Dispers Sci Technol 12, 201 (1991)

    Article  Google Scholar 

  38. C. J. van Oss, Marcel Dekker, New York (1994)

  39. V.A. Parsegian, R.P. Rand, in Structure and Dynamics of Membranes, ed. by R. Lipowsky, E. Sackmann, 1st edn. (Elsevier Science, Amsterdam, 1995), p. 643

    Google Scholar 

  40. F. Pignon, G. Belina, T. Narayanan, X. Paubel, A. Magnin, G. Gesan-Guiziou, J Chem Phys 121, 8138 (2004)

    Article  CAS  Google Scholar 

  41. G. Beaucage, J Appl Cryst 28, 717 (1995)

  42. M. Hull, J.A. Kitchener, Trans Faraday Soc 65, 3093 (1969)

Download references

Acknowledgments

We thank Tim Steinhauer, Patricia Meyer and Jan Perlich for technical support and collaboration. This work was financially supported by a DFG-grant (DFG GE 2375/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gebhardt.

Appendix

Appendix

We used the following equation to fit the q-dependent intensity I(q) of the reflection peak in Fig. 5a.

$$ I(q)=\frac{a}{\left(1+{\left(\frac{\left( q-{q}_0\right)}{w}\right)}^2\right)}+ b1\cdot {e}^{m\left( q-{q}_1\right)}+ c $$
(3)

The first term is a lorentzian profile with amplitude a and width w and the remaining formula fits the q-dependent background.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strixner, T., Sterr, J., Kulozik, U. et al. Structural Study on Hen-egg Yolk High Density Lipoprotein (HDL) Granules. Food Biophysics 9, 314–321 (2014). https://doi.org/10.1007/s11483-014-9359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9359-y

Keywords

Navigation