Skip to main content
Log in

Impact of Surface Active Compounds on Iron Catalyzed Oxidation of Methyl Linolenate in AOT–Water–Hexadecane Systems

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Edible oils contain minor surface active components that form micro-heterogeneous environments, such as reverse micelles, which can alter the rate and direction of chemical reactions. However, little is known about the role of these micro-heterogeneous environments on lipid oxidation of bulk oil. Our objective was to evaluate the ability of water, cumene hydroperoxide, oleic acid, and phosphatidylcholine to influence the structure of reverse micelles in a model oil system: sodium bis(2-ethylhexyl) sulfosuccinate (aerosol-OT; AOT) in n-hexadecane. The influence of reverse micelle structure on iron catalyzed lipid oxidation was determined using methyl linolenate as an oxidizable substrate. The size and shape of the reverse micelle were investigated by small-angle x-ray scattering, and water contents was determined by Karl Fischer titrations. Lipid hydroperoxides and thiobarbituric acid reactive substances were used to follow lipid oxidation. Our results showed that AOT formed spherical reverse micelles in hexadecane. The size of the reverse micelles increased with increased water or phosphatidylcholine concentration, but decreased upon addition of cumene hydroperoxide or oleic acid. Iron catalyzed oxidation of methyl linolenate in the reverse micelle system decreased with increasing water concentration. Addition of phosphatidylcholine into the reverse micelle systems decreased methyl linolenate oxidation compared to control and reverse micelles with added oleic acid. These results indicate that water, cumene hydroperoxide, oleic acid, and phosphatidylcholine can alter reverse micelle size and lipid oxidation rates. Understanding how these compounds influence reverse micelle structure and lipid oxidation rates could provide information on how to modify bulk oil systems to increase oxidative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. R. Przybylski, N.A.M. Eskin, Inform 7, 186 (2006).

    Google Scholar 

  2. R.D. O’Brien, Fats and oil: Formulating and processing for applications (CRC Press, Boca Raton, Florida, 2004).

    Google Scholar 

  3. T. Gulik-Krzywicki, K. Larsson, Chem Phys. Lipids 35, 127 (1984).

    Article  CAS  Google Scholar 

  4. R. Gupta, H.S. Muralidhara, H.T. Davis, Langmuir 17, 5176 (2001).

    Article  CAS  Google Scholar 

  5. J.R. Mancuso, D.J. McClements, E.A. Decker, J Agric Food Chem 47, 4112 (1999).

    Article  Google Scholar 

  6. J.L. Donnelly, E.A. Decker, D.J. McClements, J Food Sci Tech 63, 997 (1998).

    CAS  Google Scholar 

  7. M. Hu, D.J. McClements, E.A. Decker, J Agric Food Chem 51, 1435 (2003).

    Article  CAS  Google Scholar 

  8. M.P.C. Silvestre, W. Chaiyasit, R.G. Brannan, D.J. McClements, E.A. Decker, J Agric Food Chem 48, 2057 (2000).

    Article  CAS  Google Scholar 

  9. W. Chaiyasit, M.P.C. Silvestre, D.J. McClements, E.A. Decker, J Agric Food Chem 48, 3077 (2000).

    Article  CAS  Google Scholar 

  10. J.H. Schulman, W. Stoeckenius, L.M. Prince, J Phys Chem 63, 1677 (1959).

    Article  CAS  Google Scholar 

  11. K.K. Ghosh, L.K. Tiwary, J Disp Sci Tech 22, 343 (2001).

    Article  CAS  Google Scholar 

  12. C.B. Roberts, J.B. Thompson, J Phys Chem B 102, 9074 (1998).

    Article  CAS  Google Scholar 

  13. E.A. Decker, V. Ivanov, B.Z. Zhu, B. Frei, J Agric Food Chem 49, 511 (2001).

    Article  CAS  Google Scholar 

  14. G. Cassin, S. Illy, M.P. Pileni, Chem Phys Lett 221, 205 (1994).

    Article  Google Scholar 

  15. N.C. Shantha, E.A. Decker, J AOAC Int 77, 421 (1994).

    CAS  Google Scholar 

  16. R.E. McDonald, H.O. Hultin, J Food Sci 52, 15 (1987).

    Article  CAS  Google Scholar 

  17. G.W. Snedecor, G.W. Cochran, Statistical Methods, 8th ed. (Iowa State University Press, Ames, IA., 1989).

    Google Scholar 

  18. E.E. Carpenter, C. Sangregorio, C.J. O’Connor, Mol Cryst Liq Cryst 334, 641 (1999).

    Article  CAS  Google Scholar 

  19. B.A. Simmons, C.E. Taylor, F.A. Landis, G.L. McPherson, D.K. Schwartz, R. Moore, J Am Chem Soc 123, 2414 (2001).

    Article  CAS  Google Scholar 

  20. D.G. Shchukin, G.B. Sukhorukov, Adv Materials 16, 671 (2004).

    Article  CAS  Google Scholar 

  21. V. Uskokovic, M. Drofenik, Surface Rev Lett 12, 239 (2005).

    Article  CAS  Google Scholar 

  22. G.M. Sando, K. Dahl, J.C. Owrutsky, J Phys Chem A 108, 11209 (2004).

    Article  CAS  Google Scholar 

  23. P.M. Harrison, R.J. Hoare, Metals in biochemistry (Chapman and Hall, London, 1980).

    Google Scholar 

  24. E.A. Decker, D.J. McClements, Inform 12, 251 (2001).

    Google Scholar 

  25. K. Martinek, N.L. Klyachko, A.V. Kabanov, Y.L. Khmelnitsky, A.V. Levashov, Biochim Biophys Acta 981, 161 (1989).

    Article  CAS  Google Scholar 

  26. H.B. Bohidar, M. Behboudnia, Colloids Surfaces A 178, 313 (2001).

    Article  CAS  Google Scholar 

  27. D.I. Svergun, P.V. Konarev, V.V. Volkov, et al., J Chem Phys 113, 1651 (2000).

    Article  CAS  Google Scholar 

  28. M. Kotlarchyk, J.S. Huang, S.H. Chen, J Phys Chem 89, 4382 (1985).

    Article  CAS  Google Scholar 

  29. W. Chaiyasit, R.J. Elias, D.J. McClements, E.A. Decker, Crit Rev Food Sci Nutri 47, 299 (2007).

    Article  CAS  Google Scholar 

  30. E.N. Frankel, Lipid oxidation (The Oily Press, Dundee, Scotland, 1998).

    Google Scholar 

  31. C.D. Nuchi, P. Hernandez, D.J. McClements, E.A. Decker, J Agric Food Chem 50, 5445 (2002).

    Article  CAS  Google Scholar 

  32. P.C. Griffiths, A. Pual, Z. Khayat, R.K. Heenan, R. Ranganathan, I. Grillo, Soft Matter 1, 152 (2005).

    Article  CAS  Google Scholar 

  33. W.C. Hung, F.Y. Chen, H.W. Huang, Biochim Biophys Acta 1467, 198 (2000).

    Article  CAS  Google Scholar 

  34. J.B. Brubach, A. Mermet, A. Filabozzi, D. Gerschel, M.P. Krafft, P. Roy, J Phys Chem B 105, 430 (2001).

    Article  CAS  Google Scholar 

  35. N.M. Correa, M.A. Biasutti, J.J. Silber, J. Colloid Interface Sci 184, 570 (1996).

    Article  CAS  Google Scholar 

  36. G. Onori, A. Santucci, J Phys Chem 97, 5430 (1993).

    Article  CAS  Google Scholar 

  37. S. Senapati, M.L. Berkowitz, J Chem Phys 118, 1937 (2003).

    Article  CAS  Google Scholar 

  38. J. Faeder, M.V. Albert, B.M. Ladanyi, Langmuir 19, 2514 (2003).

    Article  CAS  Google Scholar 

  39. L.M. Qi, J.M. Ma, J Colloid Interface Sci 197, 36 (1998).

    Article  CAS  Google Scholar 

  40. H. Chen, D.J. Lee, E.G. Schanus, Lipids 27, 234 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Decker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaiyasit, W., Stanley, C.B., Strey, H.H. et al. Impact of Surface Active Compounds on Iron Catalyzed Oxidation of Methyl Linolenate in AOT–Water–Hexadecane Systems. Food Biophysics 2, 57–66 (2007). https://doi.org/10.1007/s11483-007-9031-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9031-x

Keywords

Navigation