Skip to main content
Log in

Calorimetric and Microstructural Investigation of Frozen Hydrated Gluten

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The thermal and microstructural properties of frozen hydrated gluten were studied by using differential scanning calorimetry (DSC), modulated DSC, and low-temperature scanning electron microscopy (cryo-SEM). This work was undertaken to investigate the thermal transitions observed in frozen hydrated gluten and relate them to its microstructure. The minor peak that is observed just before the major endotherm (melting of bulk ice) was assigned to the melting of ice that is confined to capillaries formed by gluten. The Defay–Prigogine theory for the depression of melting point of fluids confined in capillaries was put forward in order to explain the calorimetric results. The pore radius size of the capillaries was calculated by using four different empirical models. Kinetic analysis of the growth of the pore radius size revealed that it follows first-order kinetics. Cryo-SEM observations revealed that gluten forms a continuous homogeneous and not fibrous network. Results of the present investigation showed that is impossible to assign a T g value for hydrated frozen gluten because of the wide temperature range over which the gluten matrix vitrifies, and therefore the construction of state diagrams is not feasible at subzero temperatures for this material. Furthermore, the gluten matrix is deteriorated with two different mechanisms from ice recrystallization, one that results from the growth of ice that is confined in capillaries and the other from the growth of bulk ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. P.D. Ribotta, A.E. Leon and M.C. Anon, Cereal Chem 80, 454 (2003).

    CAS  Google Scholar 

  2. P.D. Ribotta, A.E. Leon and M.C. Anon, J Agric Food Chem 49, 913 (2001).

    Article  CAS  Google Scholar 

  3. P.T. Berglund, D.R. Shelton and T.P. Freeman, Cereal Chem 68, 105 (1991).

    Google Scholar 

  4. Y. Inoue and W. Bushuk, Cereal Chem 68, 627 (1991).

    Google Scholar 

  5. Y. Inoue, H.D. Sapirstein, S. Takayanagi and W. Bushuk, Cereal Chem 71, 118 (1994).

    Google Scholar 

  6. Y. Inoue and W. Bushuk, Cereal Chem 69, 423 (1992).

    CAS  Google Scholar 

  7. K. Autio and E. Sinda, Cereal Chem 69, 409 (1992).

    Google Scholar 

  8. A. Baier-Schenk, S. Handschin and B. Conde-Petit, Cereal Chem 82, 251 (2005).

    CAS  Google Scholar 

  9. A. Bot, Cereal Chem 80, 366 (2003).

    CAS  Google Scholar 

  10. T.J. Laaksonen and Y.H. Roos, J Cereal Sci 32, 281 (2000).

    Article  CAS  Google Scholar 

  11. J. Rasanen, J.M.V. Blanshard, J.R. Mitchell, W. Derbyshire and K. Autio, J Cereal Sci 28, 1 (1998).

    Article  Google Scholar 

  12. G.P. Johari, J Phys Chem B 101, 6780 (1997).

    Article  CAS  Google Scholar 

  13. G.P. Johari and G. Sartor, J Chem Soc Faraday Trans 93, 2609 (1997).

    Article  Google Scholar 

  14. G. Sartor and G.P. Johari, J Phys Chem B 101, 6791 (1997).

    Article  Google Scholar 

  15. G. Sartor and G.P. Johari, J Phys Chem B 101, 6575 (1997).

    Article  CAS  Google Scholar 

  16. G. Sartor, E. Mayer and G.P. Johari, Biophys J 66, 249 (1994).

    Article  CAS  Google Scholar 

  17. M.-S. Rahman, Trends Food Sci Technol 17, 129 (2006).

    Article  CAS  Google Scholar 

  18. J.L. Kokini, A.M. Cocero, H. Madeka and E. Degraaf, Trends Food Sci Technol 5, 281 (1994).

    Article  CAS  Google Scholar 

  19. R. Lasztity, The Chemistry of Cereal Proteins, 2nd ed. (CRC Press, Boca Raton, FL 1996), p. 328.

    Google Scholar 

  20. J.D. Schofield, Flour proteins: structure and functionality in baked products. In: Chemistry and Physics of Baking, edited by J.M.V. Blanshard, P.J. Frazier and T. Galliard (Royal Society of Chemistry, London 1986).

    Google Scholar 

  21. P.S. Belton, J Cereal Sci 41, 203 (2005).

    Article  CAS  Google Scholar 

  22. B.J. Dobraszczyk and M. Morgenstern, J Cereal Sci 38, 229 (2003).

    Article  CAS  Google Scholar 

  23. H. Singh and F. MacRitchie, J Cereal Sci 33, 231 (2001).

    Article  CAS  Google Scholar 

  24. T. Amend and H.D. Belitz, Z Lebensm -Unters Forsch 190, 401 (1990).

    Article  CAS  Google Scholar 

  25. T. Amend, H.D. Belitz, R. Moss and P. Resmini, Food Struct 10, 277 (1991).

    Google Scholar 

  26. O. Paredeslopez and W. Bushuk, Cereal Chem 60, 24 (1983).

    Google Scholar 

  27. P.T. Berglund, D.R. Shelton and T.P. Freeman, Cereal Foods World 33, 675 (1988).

    Google Scholar 

  28. P.T. Berglund, D.R. Shelton and T.P. Freeman, Cereal Chem 67, 139 (1990).

    Google Scholar 

  29. E. Esselink, H. van Aalst, M. Maliepaard, T.M.H. Henderson, N.L.L. Hoekstra and J. van Duynhoven, Cereal Chem 80, 419 (2003).

    CAS  Google Scholar 

  30. S. Zounis, K.J. Quail, M. Wootton and M.R. Dickson, J Cereal Sci 36, 135 (2002).

    Article  Google Scholar 

  31. S. Zounis, K.J. Quail, M. Wootton and M.R. Dickson, J Cereal Sci 35, 135 (2002).

    Article  CAS  Google Scholar 

  32. A. Baier-Schenk, S. Handschin, M. von Schonau, A.G. Bittermann, T. Bachi and B. Conde-Petit, J Cereal Sci 42, 255 (2005).

    Article  CAS  Google Scholar 

  33. M.B. Durrenberger, S. Handschin, B. Conde-Petit and F. Escher, Lebensm-Wiss Technol 34, 11 (2001).

    Article  CAS  Google Scholar 

  34. W. Li, B.J. Dobraszczyk and P.J. Wilde, J Cereal Sci 39, 403 (2004).

    Article  CAS  Google Scholar 

  35. I.C. Bache and A.M. Donald, J Cereal Sci 28, 127 (1998).

    Article  CAS  Google Scholar 

  36. A.D. Roman-Gutierrez, S. Guilbert and B. Cuq, Lebensm-Wiss Technol 35, 730 (2002).

    Article  CAS  Google Scholar 

  37. F. Romm, Microporous Media (Marcel Dekker, New York 2004).

    Google Scholar 

  38. R. Defay and I. Prigogine, Surface Tension and Adsorption (Longmans, London 1966).

    Google Scholar 

  39. J.E.K. Schawe, Thermochim Acta 304305, 111 (1997).

    Article  Google Scholar 

  40. N.J. Coleman and D.Q.M. Craig, Int J Pharm 135, 13 (1996).

    Article  CAS  Google Scholar 

  41. M. Reading, A. Luget and R. Wilson, Thermochim Acta 238, 295 (1994).

    Article  CAS  Google Scholar 

  42. J.E.K. Schawe, Thermochim Acta 261, 183 (1995).

    Article  CAS  Google Scholar 

  43. Y. Kraftmakher, Modulation Calorimetry, Theory and Applications (Springer, Berlin 2004).

    Google Scholar 

  44. G.P. Johari, Chem Phys 258, 277 (2000).

    Article  CAS  Google Scholar 

  45. S. Brawer, Relaxation in Viscous Liquids and Glasses: Review of Phenomenology, Molecular Dynamics Simulations, and Theoretical Treatment (American Ceramic Society, Columbus, OH 1985).

    Google Scholar 

  46. T.J. Laaksonen and Y.H. Roos, J Cereal Sci 33, 331 (2001).

    Article  CAS  Google Scholar 

  47. C. Faivre, D. Bellet and G. Dolino, Eur Phys J B 7, 19 (1999).

    Article  CAS  Google Scholar 

  48. M. Iza, S. Woerly, C. Danumah, S. Kaliaguine and M. Bousmina, Polymer 41, 5885 (2000).

    Article  CAS  Google Scholar 

  49. A. Ksiazczak, A. Radomski and T. Zielenkiewicz, J Therm Anal Calorim 74, 559 (2003).

    Article  CAS  Google Scholar 

  50. M.R. Landry, Thermochim Acta 433, 27 (2005).

    Article  CAS  Google Scholar 

  51. T. Yamamoto, A. Endo, Y. Inagi, T. Ohmori and M. Nakaiwa, J Colloid Interface Sci 284, 614 (2005).

    Article  CAS  Google Scholar 

  52. C.Y. Yortsos and K.A. Stubos, Curr Opin Colloid Interface Sci 6, 208 (2001).

    Article  CAS  Google Scholar 

  53. J.N. Hay and P.R. Laity, Polymer 41, 6171 (2000).

    Article  CAS  Google Scholar 

  54. C. Jallut, J. Lenoir, C. Bardot and C. Eyraud, J Membr Sci 68, 271 (1992).

    Article  CAS  Google Scholar 

  55. D. Morineau, G. Dosseh, C. Alba-Simionesco and P. Llewellyn, Philos Mag B 79, 1847 (1999).

    Article  CAS  Google Scholar 

  56. R. Neffati, L. Apekis and J. Rault, J Therm Anal Calorim 54, 741 (1998).

    Article  CAS  Google Scholar 

  57. M. Sliwinska-Bartowiak, J. Gras, R. Sikorski, R. Radhakrishnan, L. Gelb and E.K. Gubbins, Langmuir 15, 6060 (1999).

    Article  Google Scholar 

  58. K.M. Unruh, T.E. Huber and C.A. Huber, Phys Rev B Condens Matter 48, 9021 (1993).

    CAS  Google Scholar 

  59. M. Wulff, Thermochim Acta 419, 291 (2004).

    Article  CAS  Google Scholar 

  60. N.V. Churaev, S.A. Bardasov and V.D. Sobolev, Colloids Surf A Physicochem Eng Asp 79, 11 (1993).

    Article  CAS  Google Scholar 

  61. R. Denoyel and R.J.M. Pellenq, Langmuir 18, 2710 (2002).

    Article  CAS  Google Scholar 

  62. E.F.J. Esselink, H. van Aalst, M. Maliepaard and J.P.M. van Duynhoven, Cereal Chem 80, 396 (2003).

    CAS  Google Scholar 

  63. O. Coussy, J Mech Phys Solids 53, 1689 (2005).

    Article  Google Scholar 

  64. M. Brun, A. Lallemand, J.-F. Quinson and C. Eyraud, Thermochim Acta 21, 59 (1977).

    Article  CAS  Google Scholar 

  65. G.W. Scherer, J Non-Cryst Solids 155, 1 (1993).

    Article  CAS  Google Scholar 

  66. G.W. Scherer, Cem Concr Res 29, 1347 (1999).

    Article  CAS  Google Scholar 

  67. K. Ishikiriyama and M. Todoki, J Colloid Interface Sci 171, 103 (1995).

    Article  CAS  Google Scholar 

  68. K. Ishikiriyama, M. Todoki and K. Motomura, J Colloid Interface Sci 171, 92 (1995).

    Article  CAS  Google Scholar 

  69. G. Cojazzi and M. Pizzoli, Macromol Phys Chem 200, 2356 (1999).

    Article  CAS  Google Scholar 

  70. K.G. Rennie and J. Clifford, Faraday Trans I 73, 680 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Greek State Scholarships Foundation and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support, and Dr. S. Smith for technical assistance and fruitful discussions regarding the cryo-SEM part of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Goff.

Appendix

Appendix

In the following, a modification of the Kelvin equation for the case of water that is confined in a pore and is surrounded by ice will be derived. The subscripts refer to Figure 1.

For a system in equilibrium with flat surfaces, the Gibbs–Duhem equation for each phase is:

$$ - S_{i} {\text{d}}T + V_{i} {\text{d}}P_{i} + n_{i} {\text{d}}\mu _{i} = 0 $$
(A1)

where S i , V i , n i , and μ i are the entropy, volume, number of moles, and chemical potential of phase i [where i designates gas (g), liquid (l) or solid (s)].

The system must also be in mechanical equilibrium and therefore the Laplace equation for the solid liquid interface is:

$$P_{{\text{s}}} - P_{{\text{l}}} = \kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} $$
(A2)

where κ sl is a shape factor that relates to the interface curvature between solid and liquid phases and γ sl the interfacial tension between the solid and liquid interfaces.

Because the solid–gas interface is flat the pressures on each side of the interface will be equal:

$$ P_{{\text{g}}} = P_{{\text{s}}} $$
(A3)

It is also known that at equilibrium the chemical potentials of each phase are equal:

$$ n_{{\text{s}}} \mu _{{\text{s}}} = n_{{\text{l}}} \mu _{{\text{l}}} = n_{{\text{g}}} \mu _{{\text{g}}} $$
(A4)

If the system passes from one equilibrium state to another neighboring equilibrium state, then:

$${\text{d}}P_{{\text{s}}} - {\text{d}}P_{{\text{l}}} = {\text{d}}{\left( {\kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} } \right)}{\text{ }}\,{\text{or }}\,{\text{d}}P_{{\text{l}}} = {\text{d}}P_{{\text{s}}} - {\text{d}}{\left( {\kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} } \right)}$$
(A5)
$$ {\text{d}}P_{{\text{g}}} = {\text{d}}P_{{\text{s}}} $$
(A6)
$$ n_{{\text{s}}} {\text{d}}\mu _{{\text{s}}} = n_{{\text{l}}} {\text{d}}\mu _{{\text{l}}} = n_{{\text{g}}} {\text{d}}\mu _{{\text{g}}} $$
(A7)

It is necessary to find a relation between the thermodynamic parameters that describe the system where all the above equations can be used in the analysis. Since the Gibbs–Duhem (GD) equations for each phase equal to zero at equilibrium, then it is valid to subtract GDsolid − GDliquid and GDgas − GDsolid. The first subtraction and use of Eqs. (A5), (A6), and (A7) gives:

$${\left( {\frac{{S_{{\text{l}}} - S_{{\text{s}}} }} {{V_{{\text{s}}} - V_{{\text{l}}} }}} \right)}{\text{d}}T + {\text{d}}P_{{\text{s}}} + \frac{{V_{{\text{l}}} }} {{V_{{\text{s}}} - V_{{\text{l}}} }}{\text{d}}{\left( {\kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} } \right)} = 0$$
(A8)

After the second subtraction:

$$ \frac{{S_{{\text{s}}} - S_{{\text{g}}} }} {{V_{{\text{g}}} - V_{{\text{s}}} }}{\text{d}}T + {\text{d}}P_{s} = 0 $$
(A9)

A third subtraction of Eqs. (A8) and (A9) yields:

$${\left[ {{\left( {S_{{\text{l}}} - S_{{\text{s}}} } \right)} - \frac{{V_{{\text{s}}} - V_{{\text{l}}} }} {{V_{{\text{g}}} - V_{{\text{s}}} }}{\left( {S_{{\text{s}}} - S_{{\text{g}}} } \right)}} \right]}{\text{d}}T = - V_{{\text{l}}} {\text{d}}{\left( {\kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} } \right)}$$
(A10)

Since \( V_{{\text{g}}} \gg V_{{\text{s}}} {\text{, }}V_{{\text{l}}} {\text{, and }}\,\,V_{{\text{s}}} - V_{{\text{l}}} \ll V_{{\text{g}}} \), the second term in the square brackets can be neglected. On melting \( \Delta S_{{{\text{s}} \to {\text{l}}}} = S_{{\text{l}}} - S_{{\text{s}}} \). The entropy change at equilibrium is \( \Delta S_{{{\text{s}} \to {\text{l}}}} = {\Delta H_{{\text{f}}} } \mathord{\left/ {\vphantom {{\Delta H_{{\text{f}}} } {T_{0} }}} \right. \kern-\nulldelimiterspace} {T_{0} } \), where ΔH f is the heat of fusion of ice and T 0 is the equilibrium melting point of bulk water. By utilizing all of the above, one finally arrives at:

$$\frac{{{\text{d}}T}} {T} = - \frac{{V_{{\text{l}}} {\text{d}}{\left( {\kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} } \right)}}} {{\Delta H_{{\text{f}}} }}$$
(A11)

Equation (A11) with integration from T 0 to T and from 0 to κ sl γ sl yields:

$${\text{In}}\frac{T} {{T_{0} }} = - \frac{{V_{{\text{l}}} \kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} }} {{\Delta H_{{\text{f}}} }}$$
(A12)

Equation (A12) can also be found with a positive sign. This depends on the choice of the curvature (wetting or not wetting of the walls), and the change in curvature remedies this discrepancy. The shape factor can be taken as 2/r sl if it is assumed that the surface is hemispherical.

The logarithm in Eq. (A12) can be approximated by using:

$$ {\text{ln}}\frac{T} {{T_{0} }} = {\text{ln}}{\left( {1 + \frac{{T - T_{0} }} {{T_{0} }}} \right)} \approx \frac{{T - T_{0} }} {{T_{0} }} $$
(A13)

And finally, Eq. (A12) can be rearranged to:

$$T = T_{0} - \frac{{V_{{\text{l}}} \kappa _{{{\text{sl}}}} \gamma _{{{\text{sl}}}} }} {{\Delta H_{{\text{f}}} }}T_{0}$$
(A14)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontogiorgos, V., Goff, H.D. Calorimetric and Microstructural Investigation of Frozen Hydrated Gluten. Food Biophysics 1, 202–215 (2006). https://doi.org/10.1007/s11483-006-9021-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-006-9021-4

Keywords

Navigation