Skip to main content
Log in

Food Biophysics of Protein Gels: A Challenge of Nano and Macroscopic Proportions

  • Review
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Aggregation and gelation of proteins are key reactions used to generate food texture. Heat-induced gelation of globular proteins produces two general types of gels designated as fine-stranded and particulate. Fine-stranded gels are formed from denatured proteins that aggregate into curved, flexible strands (pH > pI) or rigid, linear fibrils (pH < pI). The latter can be described as amyloid fibrils. During mastication, fine-stranded gels formed at pH > pI breakdown into large, inhomogeneous particles that have irregular shapes and do not form a cohesive mass or stick to the teeth during chewing. In contrast, particulate gels are formed from proteins with a lower degree of unfolding that aggregate into large particles. Particulate gels break down rapidly into a homogeneous distribution of small particles forming a cohesive mass that adheres to teeth during chewing. This review discusses the mechanisms related to the formation and breakdown of fine-stranded and particulate gels. Although there has been extensive research on gel formation, understanding gel breakdown based on mechanical (rheological and fracture properties) and sensory testing is limited. Further research is required to understand how the nanostructure of a gel network translates into the complex fracture pattern seen when evaluating the macroscopic property of food texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J.D. Ferry, Adv Protein Chem 4, 1 (1948).

    CAS  Google Scholar 

  2. A.H. Clark and C.D. Lee-Tuffnell, In: Functional Properties of Food Macromolecules, edited by J.R. Mitchell and D.A. Ledward (Elsevier, Essex 1986), p. 203.

    Google Scholar 

  3. A.H. Clark, In: Functional Properties of Food Macromolecules, 2nd edn., edited by S.E. Hill, D.A. Ledward, and J.R. Mitchell (Aspen, Maryland 1998), p. 77.

    Google Scholar 

  4. W.S. Gosal and S.B. Ross-Murphy, Curr Opin Colloid Interface Sci 5, 188 (2000).

    Article  CAS  Google Scholar 

  5. D. Durand, J.C. Gimel and T. Nicolai, Physica A 304, 253 (2002).

    Article  CAS  Google Scholar 

  6. A. Totosaus, J.G. Montejano, J.A. Salazar and I. Guerrero, Int J Food Sci Technol 37, 589 (2002).

    Article  CAS  Google Scholar 

  7. E.A. Foegeding, In: Food Colloids: Interactions, Microstructure and Processing, edited by E. Dickinson (The Royal Chemical Society, Cambridge 2005), p. 3.

    Google Scholar 

  8. C.M. Dobson, Nature 426, 884 (2003).

    Article  CAS  Google Scholar 

  9. C. Bhattacharjee, S. Saha, A. Biswas, M. Kundu, L. Ghosh and K.P. Das, Protein J 24, 27 (2005).

    Article  CAS  Google Scholar 

  10. M.P. Tombs, In: Proteins as Human Food, edited by R.A. Lawrie (AVI Publishing, Connecticut 1970), p. 126.

    Google Scholar 

  11. A.H. Clark and C.D. Tuffnell, Int J Pept Protein Res 16, 339 (1980).

    CAS  Google Scholar 

  12. A.H. Clark, F.J. Judge, J.B. Richards, J.M. Stubbs and A. Suggett, Int J Pept Protein Res 17, 380 (1981).

    CAS  Google Scholar 

  13. A.H. Clark, D.H.P. Saunderson and A. Suggett, Int J Pept Protein Res 17, 353 (1981).

    CAS  Google Scholar 

  14. R.K. Richardson and S.B. Ross-Murphy, Br Polym J 13, 11 (1981).

    Article  CAS  Google Scholar 

  15. I. Heertje and F.S.M. van Kleef, Food Microstruct 5, 91 (1986).

    Google Scholar 

  16. M. Langton and A.-M. Hermansson, Food Hydrocoll 5, 523 (1992).

    CAS  Google Scholar 

  17. E. Doi, Trends Food Sci Technol 4, 1 (1993).

    Article  CAS  Google Scholar 

  18. M. Standing and A.-M. Hermansson, Foood Hydrocoll 5, 339 (1991).

    Google Scholar 

  19. J.I. Boye, M. Kalab, I. Alli, C.Y. Ma and U. Lebensm.-Wism, Technologia 33, 165 (2000).

    CAS  Google Scholar 

  20. M. Langton and A.-M. Hermansson, Food Hydrocoll 10, 179 (1996).

    CAS  Google Scholar 

  21. W.S. Gosal, A.H. Clark, P.D.A. Pudney and S.B. Ross-Murphy, Langmuir 18, 7174 (2002).

    Article  CAS  Google Scholar 

  22. C. Veerman, H. Ruis, L.M.C. Sagis and E. van der Linden, Biomacromolecules 3, 869 (2002).

    Article  CAS  Google Scholar 

  23. L.M. Sagis, C. Veerman and E. van der Linden, Langmui 20, 924 (2004).

    Article  CAS  Google Scholar 

  24. T. Lefèvre and M. Subirade, Biopolymers 54, 578 (2000).

    Article  Google Scholar 

  25. S. Ikeda and E.C.Y. Li-Chan, Food Hydrocoll 18, 489 (2004).

    Article  CAS  Google Scholar 

  26. D. Renard, M.A.V. Axelos and J. Lefebvre, In: Food Macromolecules and Colloids, edited by E. Dickinson and D. Lorient (The Royal Chemical Society, Cambridge 1995), p. 390.

    Google Scholar 

  27. D. Renard, M.A.V. Axelos, F. Boué and J. Lefebvre, Biopolymers 39, (1996).

  28. J. Lefebvre, D. Renard, and A.C. Sanchez-Gimeno, Rheol Acta 37, 345 (1998).

    Article  CAS  Google Scholar 

  29. P. Aymard, T. Nicolai and D. Durand, Macromolecules 32, (1999).

  30. C. Le Bon, T. Nicolai and D. Durand, Int J Food Sci Technol 34, 451 (1999).

    Article  Google Scholar 

  31. C. Le Bon, T. Nicolai and D. Durand, Macromolecules 32, 6120 (1999).

    Article  CAS  Google Scholar 

  32. M. Pouzot, D. Durand and T. Nicolai, Macromolecules 37, 8703 (2004).

    Article  CAS  Google Scholar 

  33. M. Pouzot, T. Nicolai, D. Durand and L. Benyahia, Macromolecules 37, 614 (2004).

    Article  CAS  Google Scholar 

  34. S. Ikeda and V.J. Morris, Biomacromolecules 3, 382 (2002).

    Article  CAS  Google Scholar 

  35. S. Ikeda, Food Hydrocoll 17, 399 (2003).

    Article  CAS  Google Scholar 

  36. K. Baussay, C. Le Bon, T. Nicolai, D. Durand and J.-P. Busnel, Int J Biol Macromol 34, 21 (2004).

    Article  CAS  Google Scholar 

  37. M.A.M. Hoffman, G. Sala, C. Olieman and K.G. de Kruif, J Agric Food Chem 45, 2949 (1997).

    Article  Google Scholar 

  38. M. Verheul, S.P.F.M. Roefs and K.G. de Kruif, J Agric Food Chem 46, 896 (1998).

    Article  CAS  Google Scholar 

  39. M.A.M. Hoffmann and P.J.J.M. van Mil, J Agric Food Chem 47, 1898 (1999).

    Article  CAS  Google Scholar 

  40. B. Vardhanabhuti and E.A. Foegeding, J Agric Food Chem 47, 3649 (1999).

    Article  CAS  Google Scholar 

  41. A. Tobitani and S.B. Ross-Murphy, Macromolecules 30, 4845 (1997).

    Article  CAS  Google Scholar 

  42. A. Tobitani and S.B. Ross-Murphy, Macromolecules 30, 4855 (1997).

    Article  CAS  Google Scholar 

  43. G.M. Kavanagh, A.H. Clark and S.B. Ross-Murphy, Langmuir 16, 9584 (2000).

    Article  CAS  Google Scholar 

  44. G.M. Kavanagh, A.H. Clark and S.B. Ross-Murphy, Int J Biol Macromol 28, 41 (2000).

    Article  CAS  Google Scholar 

  45. G.M. Kavanagh, A.H. Clark and S.B. Ross-Murphy, Food Hydrocoll 15, 383 (2001).

    Article  Google Scholar 

  46. W.S. Gosal, A.H. Clark and S.B. Ross-Murphy, Biomacromolecules 5, 2408 (2004).

    Article  CAS  Google Scholar 

  47. W.S. Gosal, A.H. Clark and S.B. Ross-Murphy, Biomacromolecules 5, 2420 (2004).

    Article  CAS  Google Scholar 

  48. W.S. Gosal, A.H. Clark and S.B. Ross-Murphy, Biomacromolecules 5, 2430 (2004).

    Article  CAS  Google Scholar 

  49. L.M.C. Sagis, C. Veerman, R. Ganzevles, M. Ramaekers, S.G. Bolder and E. van der Linden, Food Hydrocoll 16, 207 (2002).

    Article  CAS  Google Scholar 

  50. C. Veerman, H. Ruis, L.M.C. Sagis and E. van der Linden, Biomacromolecules 3, 207 (2002).

    Article  CAS  Google Scholar 

  51. M. Weijers, L.M.C. Sagis, C. Veerman, B. Sperber and E. van der Linden, Food Hydrocoll 16, 269 (2002).

    Article  CAS  Google Scholar 

  52. C. Veerman, G. de Schiffart, L.M.C. Sagis and E. van der Linden, Int J Biol Macromol 33, 121 (2003).

    Article  CAS  Google Scholar 

  53. C. Veerman, L.M.C. Sagis, J. Heck and E. van der Linden, Int J Biol Macromol 31, 139 (2003).

    Article  CAS  Google Scholar 

  54. D. Renard and J. Lefebvre, Int J Biol Macromol 4, 287 (1992).

    Article  Google Scholar 

  55. M. Pouzot, L. Benyahai and T. Nicolai, J Rheol 48, 1123 (2004).

    Article  CAS  Google Scholar 

  56. C. Wilkinson, G.B. Dijksterhuis and M. Minekus, Trends Food Sci Technol 11, 442 (2000).

    Article  CAS  Google Scholar 

  57. T.L. Anderson, Fracture Mechanics, Fundamentals and Applications, 2nd edn., (CRC Press, New York 1995).

    Google Scholar 

  58. D.D. Hamann, In: Physical Properties of Foods, edited by E.B. Bagley and M. Peleg (AVI Publishing, Connecticut 1983), p. 351.

    Google Scholar 

  59. H. McEvoy, S.B. Ross-Murphy and A.H. Clark, In: Gums and Stabilisers for the Food Industry 2, edited by G.O. Philips, D.J. Wedlock, and P.A. Williams (Pergamon Press, Oxford 1984), p. 111.

    Google Scholar 

  60. H. McEvoy, S.B. Ross-Murphy and A.H. Clark, Polymer 26, 1483 (1985).

    Article  CAS  Google Scholar 

  61. T. van Vliet, H. Luyten and P. Walstra, In: Food Polymers, Gels and Colloids, edited by G.O. Phillips, D.J. Wedlock and P.A. Williams, E. Dickinson (The Royal Chemical Society, Cambridge 1991), p. 392.

    Google Scholar 

  62. P.J. Lillford, J Texture Stud 32, 397 (2001).

    Article  Google Scholar 

  63. T. van Vliet, H. Luyten and P. Walstra, In: Food Colloids and Polymers: Stability and Mechanical Properties, edited by E. Dickinson and P. Walstra (The Royal Chemical Society, Cambridge 1993), p. 175.

    Google Scholar 

  64. E.A. Foegeding, C. Gonzalez, D.D. Hamann and S. Case, Food Hydrocoll 8, 125 (1994).

    Article  CAS  Google Scholar 

  65. J. Zhang, C.R. Daubert and E.A. Foegeding, Rheol Acta 44, 622 (2005).

    Article  CAS  Google Scholar 

  66. L.M. Barrangou, C.R. Daubert and E.A. Foegeding, Food Hydrocoll 20, 184 (2006).

    Article  CAS  Google Scholar 

  67. B. Stokke, K.I. Draget, O. Smidsrod, Y. Yuguchi, H. Urakawa and K. Kajiwara, Macromolecules 33, 1853 (2000).

    Article  CAS  Google Scholar 

  68. J. Zhang, C.R. Daubert and E.A. Foegeding, J Food Sci 70, E425 (2005).

    Article  CAS  Google Scholar 

  69. E.A. Foegeding, J Texture Stud 23, 337 (1992).

    Article  Google Scholar 

  70. H. Li, A.D. Errington and E.A. Foegeding, J Food Sci 64, 893 (1999).

    Article  CAS  Google Scholar 

  71. L.L. Lowe, E.A. Foegeding and C.R. Daubert, Food Hydrocoll 17, 515 (2003).

    Article  CAS  Google Scholar 

  72. H.T. Lawless and H. Heymann, Sensory Evaluation of Food, Principles and Practices (Chapman and Hall, New York, 1998).

    Google Scholar 

  73. E.A. Gwartney, D.K. Larick and E.A. Foegeding, J Food Sci 69, S333 (2004).

    CAS  Google Scholar 

  74. J.A. Brown, E.A. Foegeding, C.R. Daubert, M.A. Drake and M. Gumpertz, J Dairy Sci 86, 3054 (2003).

    Article  CAS  Google Scholar 

  75. E.L. Bowland and E.A. Foegeding, Food Hydrocoll 9, 47 (1995).

    CAS  Google Scholar 

  76. M.K. McGuffey and E.A. Foegeding, J Texture Stud 32, 285 (2001).

    Article  Google Scholar 

  77. W. Chantrapornchai and D.J. McClements, Food Hydrocoll 16, 467 (2002).

    Article  CAS  Google Scholar 

  78. M. Verheul and S.P.F.M. Roefs, Food Hydrocoll 12, 17 (1998).

    Article  CAS  Google Scholar 

  79. M. Verheul and S.P.F.M. Roefs, J Agric Food Chem 46, 4909 (1998).

    Article  CAS  Google Scholar 

  80. M. Verheul, S.P.F.M. Roefs, J. Mellema and K.G. de Kruif, Langmuir 14, 2263 (1998).

    Article  CAS  Google Scholar 

  81. T. van Vliet, Food Qual Prefer 13, 227 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

Support from the North Carolina Agricultural Research Service, Dairy Management Inc., The Southeast Dairy Foods Research Center, and the USDS NRI competitive grants program are gratefully acknowledged. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named nor criticism of similar ones not mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Allen Foegeding.

Additional information

Paper No. FSR-05-30 of the Journal Series of the Department of Food Science, North Carolina State University, Raleigh, NC 27695-7624, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foegeding, E.A. Food Biophysics of Protein Gels: A Challenge of Nano and Macroscopic Proportions. Food Biophysics 1, 41–50 (2006). https://doi.org/10.1007/s11483-005-9003-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-005-9003-y

Keywords

Navigation