Skip to main content

Advertisement

Log in

A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat

  • BRIEF REPORT
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Approximately 50 % of HIV-1 seropositive individuals develop HIV-1 associated neurocognitive disorders (HAND), which commonly include alterations in executive functions, such as inhibition, set shifting, and complex problem solving. Executive function deficits in HIV-1 are fairly well characterized, however, relatively few studies have explored the elemental dimensions of neurocognitive impairment in HIV-1. Deficits in temporal processing, caused by HIV-1, may underlie the symptoms of impairment in higher level cognitive processes. Translational measures of temporal processing, including cross-modal prepulse inhibition (PPI), gap-prepulse inhibition (gap-PPI), and gap threshold detection, were studied in mature (ovariectomized) female HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes constitutively throughout development. Cross-modal PPI revealed a relative insensitivity to the manipulation of interstimulus interval (ISI) in HIV-1 Tg animals in comparison to control animals, extending previously reported temporal processing deficits in HIV-1 Tg rats to a more advanced age, suggesting the permanence of temporal processing deficits. In gap-PPI, HIV-1 Tg animals exhibited a relative insensitivity to the manipulation of ISI in comparison to control animals. In gap-threshold detection, HIV-1 Tg animals displayed a profound differential sensitivity to the manipulation of gap duration. Presence of the HIV-1 transgene was diagnosed with 91.1 % accuracy using gap threshold detection measures. Understanding the generality and permanence of temporal processing deficits in the HIV-1 Tg rat is vital to modeling neurocognitive deficits observed in HAND and provides a key target for the development of a diagnostic screening tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17:639–654

    CAS  PubMed  Google Scholar 

  • Alfahad TB, Nath A (2013) Update on HIV-1 associated neurocognitive disorders. Current Neurol Neurosci 13:387

    Article  Google Scholar 

  • Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27:86–92

    Article  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normal and schizophrenics. Psychophysiology 15:339–343

    Article  CAS  PubMed  Google Scholar 

  • Castello E, Baroni N, Pallestrini E (1998) Neurotological and auditory brain stem response findings in human immunodeficiency virus-positive patients without neurologic manifestations. Ann Otol Rhinol Laryngol 107:1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Chan P, Brew BJ (2014) HIV associated neurocognitive disorders in the modern antiviral treatment era: prevalence, characteristics, biomarkers, and effects of treatment. Curr HIV/AIDS Rep 11:317–324

    Article  PubMed  Google Scholar 

  • Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, Fowler JS (2008) Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage 42:869–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao LL, Lindgren JA, Flenniken DL, Weiner MW (2004) ERP evidence of impaired central nervous system function in virally suppressed HIV patients on antiretroviral therapy. Clin Neurophysiol 115:1583–1591

    Article  PubMed  PubMed Central  Google Scholar 

  • Curzon, P, Zhang, M, Radek, RJ, Fox, GB (2009) The behavioral assessment of sensorimotor processes in the mouse: acoustic startle, sensory gating, locomotor activity, rotarod, and beam walking. In: Buccafusco, J (ed) Methods of behavior analysis in neuroscience, 2 edn. Boca Raton, FL, Chapter 8

  • Dehmel S, Eisinger D, Shore SE (2012) Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front Syst Neurosci 6:1–15

    Article  Google Scholar 

  • Di Rocco A, Bottiglieri T, Dorfman D, Werner P, Morrison C, Simpson D (2000) Decreased homovanilic acid in cerebrospinal fluid correlates with impaired neuropsychologic function in HIV-1-infected patients. Clin Neuropharmacol 23:190–194

    Article  CAS  PubMed  Google Scholar 

  • Fein G, Biggins CA, Mackay S (1995) Delayed latency of the event-related brain potential P3A component in HIV disease: progressive effects with increasing cognitive impairment. Arch Neurol-Chicago 52:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 156:216–224

    Article  CAS  PubMed  Google Scholar 

  • Fitting S, Booze RM, Mactutus CF (2006a) Neonatal hippocampal Tat injections: developmental effects on prepulse inhibition (PPI) of the auditory startle response. Int J Dev Neurosci 24:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitting S, Booze RM, Mactutus CF (2006b) Neonatal intrahippocampal glycoprotein 120 injection: the role of dopaminergic alteration in prepulse inhibition in adult rats. J Pharmacol Exp Ther 318:1352–1358

    Article  CAS  PubMed  Google Scholar 

  • Fitting S, Booze RM, Mactutus CF (2008) Neonatal intrahippocampal injection of the HIV-1 proteins gp12 and Tat: differential effects on behavior and the relationship to stereological hippocampal measures. Brain Res 1232:139–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier P, Hébert S (2013) Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res 295:16–23

    Article  PubMed  Google Scholar 

  • Geyer MA, Swerdlow NR (2001) Measurement of startle response, prepulse inhibition, and habituation. Curr Protoc Neurosci 8

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  CAS  PubMed  Google Scholar 

  • Gil R, Breux JP, Neu JP, Becq-Giraudon B (1992) Cognitive evoked potentials and HIV infection. Clin Neurophysiol 22:385–391

    Article  CAS  Google Scholar 

  • Grant I, Franklin DR, Deutsch R, Woods SP, Vaida F, Ellis RJ et al (2014) Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 83:2055–2062

    Article  Google Scholar 

  • Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24:95–112

    Article  Google Scholar 

  • Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F et al (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER study. Neurology 75:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16

    Article  CAS  PubMed  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189

    Article  CAS  PubMed  Google Scholar 

  • Hoffman HS, Searle JL (1965) Acoustic variables in modification of startle reaction in rat. J Comp Physiol Psychol 60:53–58

    Article  CAS  PubMed  Google Scholar 

  • Ison JR (1982) Temporal acuity in auditory function in the rat: reflex inhibition by brief gaps in noise. J Comp Physiol Psychol 96:945–954

    Article  CAS  PubMed  Google Scholar 

  • Ison JR, Bowen PG (2000) Scopolamine reduces sensitivity to auditory gaps in the rat, suggesting a cholinergic contribution to temporal acuity. Hear Res 145:169–176

    Article  CAS  PubMed  Google Scholar 

  • Ison JR, Hammond GR (1971) Modification of startle reflex in rat by changes in auditory and visual environments. J Comp Physiol Psychol 75:435–452

    Article  CAS  PubMed  Google Scholar 

  • Ison JR, O’Connor K, Bowen GP, Bocirnea A (1991) Temporal resolution of gaps in noise by the rat is lost with functional decortication. Behav Neurosci 105:33–40

    Article  CAS  PubMed  Google Scholar 

  • Ison JR, Agrawal P, Pak J, Vaughn WJ (1998) Changes in temporal acuity with age and with hearing impairment in the mouse: a study of the acoustic startle reflex and its inhibition by brief decrements in noise level. J Acoust Soc Am 104:1696–1704

    Article  CAS  PubMed  Google Scholar 

  • Ison JR, Allen PD, Rivoli PJ, Moore JT (2005) The behavioral response of mice to gaps in noise depends on its spectral components and its bandwidth. J Acoust Soc Am 117:3944–3951

    Article  PubMed  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Schnitzler HU (1997) The acoustic startle response in rats: circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89:35–49

    Article  CAS  PubMed  Google Scholar 

  • Koralnik IJ, Beaumanoir A, Hausler R, Kohler A, Safran AB, Delacoux R et al (1990) A controlled-study of early neurologic abnormalities in men with asymptomatic human- immunodeficiency-virus infection. New Engl J Med 323:864–870

    Article  CAS  PubMed  Google Scholar 

  • Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M (2011) Human immunodeficiency virus infection in the CAN and decreased dopamine availability: relationship with neuropsychological performance. J Neurovirol 17:26–40

    Article  CAS  PubMed  Google Scholar 

  • Leitner DS, Cohen ME (1985) Role of the inferior colliculus in the inhibition of acoustic startle in the rat. Physiol Behav 34:65–70

    Article  CAS  PubMed  Google Scholar 

  • Leitner DS, Hammond GR, Springer CP, Ingham KM, Mekilo AM, Bodison PR et al (1993) Parameters affecting gap detection in the rat. Percept Psychophys 54:395–405

    Article  CAS  PubMed  Google Scholar 

  • Letendre SL, Ellis RJ, Ances BM, McCutchan JA (2010) Neurologic complications of HIV disease and their treatment. Top HIV Med 18:45–55

    PubMed  PubMed Central  Google Scholar 

  • Li L, Yeomans JS (2000) Using intracranial electrical stimulation to study the timing of prepulse inhibition of the startle reflex. Brain Res Protocol 5:67–74

    Article  CAS  Google Scholar 

  • Matas CG, Silva SM, Marcon Bde A, Goncalves IC (2010) Electrophysiological manifestations in adults with HIV/AIDS submitted and not submitted to antiretroviral therapy. Pro Fono 22:107–113

    Article  PubMed  Google Scholar 

  • McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders mind the gap. Ann Neurol 67(6):699–714

    CAS  PubMed  Google Scholar 

  • Minassian A, Henry BL, Woods SP, Vaida F, Grant I, Geyer MA, Perry W (2013) Prepulse inhibition in HIV-associated neurocognitive disorders. J Int Neuropsychol Soc 19:709–717

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran LM, Aksenov MY, Booze RM, Webb KM, Mactutus CF (2012) Adolescent HIV-1 transgenic rats: evidence for dopaminergic alterations in behavior and neurochemistry revealed by methamphetamine challenge. Curr HIV Res 10:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran LM, Booze RM, Mactutus CF (2013a) Time and time again: Temporal processing demands implicate perceptual and gating deficits in the HIV-1 Transgenic rat. J NeuroImmune Pharmacol 8:988–997

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran LM, Booze RM, Webb KM, Mactutus CF (2013b) Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol 239:139–147

    Article  CAS  PubMed  Google Scholar 

  • Peng JS, Vigorito M, Liu XQ, Zhous DJ, XW W, Chang SL (2010) The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol 218:94–101

    Article  CAS  PubMed  Google Scholar 

  • Razani J, Murphy C, Davidson TM, Grant I, McCutchan A (1996) Odor sensitivity is impaired in HIV-positive cognitively impaired patients. Physiol Behav 59:877–881

    Article  CAS  PubMed  Google Scholar 

  • Reid W, Sadowska M, Denaro F, Rao S, Foulke J, Hayes N et al (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. P Natl Acad Sci USA 98:9271–9276

    Article  CAS  Google Scholar 

  • Roscoe RF Jr, Mactutus CF, Booze RM (2014) HIV-1 transgenic female rat: Synaptodendritic alterations of medium spiny neurons in the nucleus accumbens. J NeuroImmune Pharmacol 9:642–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Royal W, Zhang L, Guo M, Jones O, Davis H, Bryant JL (2012) Immune activation, viral gene product expression and neurotoxicity in the HIV-1 transgenic rat. J Neuroimmunol 247:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens SS (1970) Neural events and the psychophysical law. Science 170:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Doolittle L, Flowers E, Zhang C, Wang Q (2014) High doses of salicylate causes prepulse facilitation of onset-gap induced acoustic startle response. Behav Brain Res 258:187–192

    Article  CAS  PubMed  Google Scholar 

  • UNAIDS (2015) Aids info: indicators. http://aidsinfo.unaids.org/ assessed 22 March 2016

  • Wang GJ, Change L, Volkow ND, Telang F, Logan J, Ernst T, Fowler JS (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458

    Article  PubMed  Google Scholar 

  • Winer, BJ (1971) Statistical principles in experimental design, 2nd ed. New York

  • Winston A, Arenas-Pinto A, Stohr W, Fisher M, Orkin CM, Aderogba K et al (2013) Neurocognitive function in HIV infected patients on antiretroviral therapy. PLoS One 8:e61949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Forkstam C, Engel JA, Svensson L (2000) Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology 149:181–188

    Article  CAS  PubMed  Google Scholar 

  • Zipursky AR, Gogolishvili D, Rueda S, Brunetta J, Carvalhal A, McCombe JA, Gill MJ, Rachlis A, Rosenes R, Arbess G, Marcotte T, Rourke SB (2013) Evaluation of brief screening tools for neurocognitive impairment in HIV/AIDS: a systematic review of the literature. AIDS 27:2385–2401

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from NIH (National Institute on Drug Abuse, DA013137; National Institute of Child Health and Human Development, HD043680; National Institute of Mental Health, MH106392) and the interdisciplinary research training program supported by the University of South Carolina Behavioral-Biomedical Interface Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Mactutus.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLaurin, K.A., Moran, L.M., Li, H. et al. A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat. J Neuroimmune Pharmacol 12, 171–179 (2017). https://doi.org/10.1007/s11481-016-9711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9711-8

Keywords

Navigation