Skip to main content
Log in

Angiotensin IV is Induced in Experimental Autoimmune Encephalomyelitis but Fails to Influence the Disease

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

In multiple sclerosis (MS) and its corresponding animal models, over-activity of the renin-angiotensin system (RAS) has been reported and pharmacological RAS blockade exerts beneficial effects. The RAS generates a number of bioactive angiotensins, thereby primarily regulating the body’s sodium homeostasis and blood pressure. In this regard, angiotensin IV (AngIV), a metabolite of the RAS has been shown to modulate inflammatory responses. Here we studied potential implications of AngIV signalling in myelin oligodendrocyte glycoprotein (MOG) peptide induced murine experimental autoimmune encephalomyelitis (EAE), a close-to-MS animal model. Mass spectrometry revealed elevated plasma levels of AngIV in EAE. Expression of cognate AT4 receptors was detected in macrophages and T cells as major drivers of pathology in EAE. Yet, AngIV did not modulate macrophage or T cell functions in vitro or displayed detectable effects on neuroantigen specific immune responses in vivo. The data argue against a major contribution of AngIV signalling in the immunopathogenesis of MOG-EAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276(52):48623–48626. doi:10.1074/jbc.C100512200

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Munger KL (2007a) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61(4):288–299. doi:10.1002/ana.21117

    Article  PubMed  Google Scholar 

  • Ascherio A, Munger KL (2007b) Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol 61(6):504–513. doi:10.1002/ana.21141

    Article  CAS  PubMed  Google Scholar 

  • Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2(7):247–257. doi:10.1002/emmm.201000080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benkhoucha M, Santiago-Raber ML, Schneiter G, Chofflon M, Funakoshi H, Nakamura T, Lalive PH (2010) Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 107(14):6424–6429. doi:10.1073/pnas.0912437107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braszko JJ, Kupryszewski G, Witczuk B, Wisniewski K (1988) Angiotensin II-(3–8)-hexapeptide affects motor activity, performance of passive avoidance and a conditioned avoidance response in rats. Neuroscience 27(3):777–783

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu CS, Ventura E, Hilliard B, Rostami A (1995) Effects of the angiotensin converting enzyme inhibitor captopril on experimental autoimmune encephalomyelitis. Immunopharmacol Immunotoxicol 17(3):471–491. doi:10.3109/08923979509016382

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu CS, Goodman DB, Grossman RI, Mannon LJ, Cohen JA (1997) Serum angiotensin-converting enzyme in multiple sclerosis. Arch Neurol 54(8):1012–1015. doi:10.1001/archneur.1997.00550200068012

    Article  CAS  PubMed  Google Scholar 

  • da Silveira KD, Coelho FM, Vieira AT, Sachs D, Barroso LC, Costa VV, Bretas TL, Bader M, de Sousa LP, da Silva TA, dos Santos RA, Simoes e Silva AC, Teixeira MM (2010) Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J Immunol 185(9):5569–5576. doi:10.4049/jimmunol.1000314

    Article  PubMed  Google Scholar 

  • Ena P, Madeddu P, Glorioso N, Cerimele D, Rappelli A (1985) High prevalence of cardiovascular diseases and enhanced activity of the renin-angiotensin system in psoriatic patients. Acta Cardiol 40(2):199–205

    CAS  PubMed  Google Scholar 

  • Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Lorenzo O, Demaegdt H, Vanderheyden P, Egido J, Ruiz-Ortega M (2005) Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Circ Res 96(9):965–973. doi:10.1161/01.RES.0000166326.91395.74

    Article  CAS  PubMed  Google Scholar 

  • Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M, Walther T (2009) Angiotensin-(1–7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS ONE 4(4):e5406. doi:10.1371/journal.pone.0005406

    Article  PubMed Central  PubMed  Google Scholar 

  • Han MH, Hwang S-I, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182):1076–1081. doi:10.1038/nature06559

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Herranz E, Pardo LA, Gold R, Linker RA (2008) Pattern of axonal injury in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Neurobiol Dis 30(2):162–173. doi:10.1016/j.nbd.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  • IMSGC IMSGC (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. doi:10.1038/nature10251

    Article  Google Scholar 

  • Iwai M, Horiuchi M (2009) Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT(1) receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res 32(7):533–536. doi:10.1038/hr.2009.74

    Article  CAS  PubMed  Google Scholar 

  • Kawajiri M, Mogi M, Higaki N, Matsuoka T, Ohyagi Y, Tsukuda K, Kohara K, Horiuchi M, Miki T, Kira JI (2009) Angiotensin-converting enzyme (ACE) and ACE2 levels in the cerebrospinal fluid of patients with multiple sclerosis. Mult Scler 15(2):262–265. doi:10.1177/1352458508097923

    Article  CAS  PubMed  Google Scholar 

  • Kawas LH, McCoy AT, Yamamoto BJ, Wright JW, Harding JW (2012) Development of angiotensin IV analogs as hepatocyte growth factor/Met modifiers. J Pharmacol Exp Ther 340(3):539–548. doi:10.1124/jpet.111.188136

    Article  CAS  PubMed  Google Scholar 

  • Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic T17 cells. Nature. doi:10.1038/nature11868

    PubMed Central  PubMed  Google Scholar 

  • Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, Axtell R, Zhang H, Platten M, Wyss-Coray T, Steinman L (2010) Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Invest 120(8):2782–2794. doi:10.1172/JCI41709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le MT, Vanderheyden PM, Szaszak M, Hunyady L, Vauquelin G (2002) Angiotensin IV is a potent agonist for constitutive active human AT1 receptors. Distinct roles of the N-and C-terminal residues of angiotensin II during AT1 receptor activation. J Biol Chem 277(26):23107–23110. doi:10.1074/jbc.C200201200

    Article  CAS  PubMed  Google Scholar 

  • Lew RA, Mustafa T, Ye S, McDowall SG, Chai SY, Albiston AL (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J Neurochem 86(2):344–350. doi:10.1046/j.1471-4159.2003.01852.x

    Article  CAS  PubMed  Google Scholar 

  • Linker RA, Mäurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M, Gold R (2002) CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 8(6):620–624. doi:10.1038/nm0602-620

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY (2012) Loss of angiotensin-converting enzyme 2 enhances TGF-beta/Smad-mediated renal fibrosis and NF-kappaB-driven renal inflammation in a mouse model of obstructive nephropathy. Lab Invest 92(5):650–661. doi:10.1038/labinvest.2012.2

    Article  CAS  PubMed  Google Scholar 

  • Ma LJ, Corsa BA, Zhou J, Yang H, Li H, Tang YW, Babaev VR, Major AS, Linton MF, Fazio S, Hunley TE, Kon V, Fogo AB (2011) Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. Am J Physiol Renal Physiol 300(5):F1203–F1213. doi:10.1152/ajprenal.00468.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moransard M, Sawitzky M, Fontana A, Suter T (2010) Expression of the HGF receptor c-met by macrophages in experimental autoimmune encephalomyelitis. Glia 58(5):559–571. doi:10.1002/glia.20945

    PubMed  Google Scholar 

  • Muccioli M, Pate M, Omosebi O, Benencia F (2011) Generation and labeling of murine bone marrow-derived dendritic cells with Qdot nanocrystals for tracking studies. J Vis Exp 52. doi:10.3791/2785

  • Nikolaou A, Van den Eynde I, Tourwe D, Vauquelin G, Toth G, Mallareddy JR, Poglitsch M, Van Ginderachter JA, Vanderheyden PM (2013) [3H]IVDE77, a novel radioligand with high affinity and selectivity for the insulin-regulated aminopeptidase. Eur J Pharmacol 702(1–3):93–102. doi:10.1016/j.ejphar.2013.01.026

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HT, Tourwe D, Chai SY, Vanderheyden PM, Van Ginderachter JA (2014) Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst. doi:10.1177/1470320313507621

    PubMed  Google Scholar 

  • Paris JJ, Eans SO, Mizrachi E, Reilley KJ, Ganno ML, McLaughlin JP (2013) Central administration of angiotensin IV rapidly enhances novel object recognition among mice. Neuropharmacology 70:247–253. doi:10.1016/j.neuropharm.2013.01.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A 106(35):14948–14953. doi:10.1073/pnas.0903958106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ray A, Dittel BN (2010) Isolation of mouse peritoneal cavity cells. J Vis Exp 35. doi:10.3791/1488

  • Ruiz-Ortega M, Esteban V, Egido J (2007) The regulation of the inflammatory response through nuclear factor-kappab pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 17(1):19–25. doi:10.1016/j.tcm.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  • Sagawa K, Nagatani K, Komagata Y, Yamamoto K (2005) Angiotensin receptor blockers suppress antigen-specific T cell responses and ameliorate collagen-induced arthritis in mice. Arthritis Rheum 52(6):1920–1928. doi:10.1002/art.21040

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schweisfurth H, Schiöberg-Schiegnitz S, Kuhn W, Parusel B (1987) Angiotensin I converting enzyme in cerebrospinal fluid of patients with neurological diseases. Klin Wochenschr 65(20):955–958

    Article  CAS  PubMed  Google Scholar 

  • Stegbauer J, Lee DH, Seubert S, Ellrichmann G, Manzel A, Kvakan H, Muller DN, Gaupp S, Rump LC, Gold R, Linker RA (2009) Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc Natl Acad Sci U S A 106(35):14942–14947. doi:10.1073/pnas.0903602106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35(6):881–900

    Article  CAS  PubMed  Google Scholar 

  • Swanson GN, Hanesworth JM, Sardinia MF, Coleman JK, Wright JW, Hall KL, Miller-Wing AV, Stobb JW, Cook VI, Harding EC (1992) Discovery of a distinct binding site for angiotensin II (3–8), a putative angiotensin IV receptor. Regul Pept 40(3):409–419

    Article  CAS  PubMed  Google Scholar 

  • Timmermans S, Bogie JF, Vanmierlo T, Lutjohann D, Stinissen P, Hellings N, Hendriks JJ (2013) High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the renin angiotensin system. J Neuroimmune Pharmacol. doi:10.1007/s11481-013-9502-4

    PubMed  Google Scholar 

  • Wright JW, Harding JW (2004) The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 72(4):263–293. doi:10.1016/j.pneurobio.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Yasuhiro K, Regav A, Kuchroo V (2013) Induction of pathogenic Th17 cells by inducible salt sensing kinase SGK1. Nature 496(7446):513–517. doi:10.1038/nature11984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto BJ, Elias PD, Masino JA, Hudson BD, McCoy AT, Anderson ZJ, Varnum MD, Sardinia MF, Wright JW, Harding JW (2010) The angiotensin IV analog Nle-Tyr-Leu-Psi-(CH2-NH2)3-4-His-Pro-Phe (Norleual) can act as a Hepatocyte Growth Factor/c-Met inhibitor. J Pharmacol Exp Ther 333(1):161–173. doi:10.1124/jpet.109.161711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Yancey PG, Zuo Y, Ma LJ, Kaseda R, Fogo AB, Ichikawa I, Linton MF, Fazio S, Kon V (2011) Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler Thromb Vasc Biol 31(12):2856–2864. doi:10.1161/ATVBAHA.111.237198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang R, Walther T, Gembardt F, Smolders I, Vanderheyden P, Albiston AL, Chai SY, Dupont AG (2010) Renal vasoconstrictor and pressor responses to angiotensin IV in mice are AT1a-receptor mediated. J Hypertens 28(3):487–494. doi:10.1097/HJH.0b013e3283343250

    Article  CAS  PubMed  Google Scholar 

  • Yeatman HA, Albiston A, Chai S (2011) Insulin-regulated Aminopeptidase in astrocytes: role in Alzheimer’s disease? Alzheimers Dement 7(4):S688. doi:10.1016/j.jalz.2011.05.1922

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the ELAN fonds of the Friedrich-Alexander University Erlangen-Nuremberg. We wish to thank Silvia Seubert for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf A. Linker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Inflammation increases plasma angiotensins Mice were immunized with MOG/CFA or left untreated (naïve), plasma was collected on day 10 and 16 after immunization and analysed by the RAS-Fingerprint technique. Angiotensin peptides are identified by bracketed amino acid numbers. (Ang(2-8) = Ang III, Bars represent mean +/- SEM; n = 6, values below quantification limit included as “0“). Plasma levels of detectable downstream peptide metabolites are increased in MOG/CFA immunized mice. (GIF 32 kb)

High Resolution Image (TIFF 14376 kb)

Supplementary Figure 2

Lnpep and c-Met proteins are expressed by macrophages. Peritoneal exudate cells were obtained by lavage from naïve C57BL/6 mice and cultured for 48 h in the presence or absence of 100 ng/ml LPS. Cells were fixed, permeabilised and stained with primary antibodies directed against Lnpep and c-Met before analysis on a flow cytometer. [a] Cells in the pM gate were further analysed (LC = Lymphocytes, GC = Granulocytes, pM = peritoneal macrophages). [b] Representative histograms of Lnpep and c-Met expression in peritoneal macrophages (iso = primary AB omitted). [c, d] Lnpep and c-Met protein expression quantified by mean fluorescence intensity. Lnpep and c-Met proteins are present in peritoneal macrophages, but not regulated upon LPS stimulation (bars represent mean +/- SEM, n = 3 replicates, pooled cells from 4-6 mice). (GIF 80 kb)

High Resolution Image (TIFF 19587 kb)

Supplementary Figure 3

AngIV does not influence T cell differentiation. [a-c] Naïve T cells were isolated from spleens of C57BL/6 mice and cultured in the presence of anti-CD3, anti-CD28 and polarizing cytokines under addition of AngIV. After 4 days, differentiated T helper cells were quantified by intracellular cytokine staining/flow cytometry. Addition of AngIV had no effect on T helper cell polarization (n = 6 replicates of pooled cells, bars represent mean +/- SEM, n = 3 p.g.). (GIF 21 kb)

High Resolution Image (TIFF 8358 kb)

Supplementary Figure 4

Cytokine production after MOG restimulation in vitro is not affected by AngIV. [a, b] Mice received continuous AngIV or saline infusion and underwent EAE induction. On day 10 post EAE induction, splenocytes were restimulated in vitro with 20 μg/ml MOG peptide for 48 h and cytokines secreted into supernatants were assayed by ELISA. [a] Production of typically T helper cell derived cytokines was not affected in AngIV infused mice. [b] Production of cytokines typically derived from antigen presenting cells or macrophages was not affected in AngIV infused mice (bars in a,b represent mean +/- SEM; n = 4 mice p.g.). (GIF 35 kb)

High Resolution Image (TIFF 12482 kb)

Supplementary Figure 5

AngIV does not impact on macrophage effector functions. [a] Peritoneal exudate cells were obtained by PBS lavage from naïve C57BL/6 mice and cultured for 24 h in the presence or absence of 100 ng/ml LPS. Cells were analysed for Ccl2/MCP-1 mRNA expression by semi-quantitative realtime PCR. AngIV had no effect on Ccl2 expression (n = 6, pool of 2 experiments). [b] Bone marrow precursor cells were differentiated into M0 macrophages, then polarised into M1 macrophages for 24h in the presence of IFN-γ, LPS and AngIV. AngIV did not influence M1 polarisation (bars represent mean +/- SEM, n = 3 p.g.). (GIF 34 kb)

High Resolution Image (TIFF 17692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzel, A., Domenig, O., Ambrosius, B. et al. Angiotensin IV is Induced in Experimental Autoimmune Encephalomyelitis but Fails to Influence the Disease. J Neuroimmune Pharmacol 9, 533–543 (2014). https://doi.org/10.1007/s11481-014-9548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-014-9548-y

Keywords

Navigation