Skip to main content

Advertisement

Log in

Epstein–Barr Virus Infection and Multiple Sclerosis: A Review

  • BRIEF REPORT
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Epstein–Barr virus (EBV) infection results in a life-long persistence of the virus in the host’s B-lymphocytes and has been associated with numerous cancers including Burkitt’s lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. There is considerable evidence that EBV infection is a strong risk factor for the development of multiple sclerosis. Early age at primary EBV infection is typically asymptomatic, but primary infection during adolescence or adulthood often manifests as infectious mononucleosis, which has been associated with a two- to threefold increased risk of MS. Most importantly, MS risk is extremely low in individuals who are EBV negative, but it increases several folds following EBV infection. Additional evidence supporting a role for EBV in MS pathogenesis includes the observations of elevated antibodies to EBV antigens (especially EBV nuclear antigen-1) prior to the onset of MS, and an increased risk of MS among EBV-positive children. The biological mechanism by which EBV may cause MS is not known, but several possibilities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Ahlgren C et al (2009) A population-based case–control study on viral infections and vaccinations and subsequent multiple sclerosis risk. Eur J Epidemiol 24(9):541–552

    Article  PubMed  Google Scholar 

  • Alotaibi S et al (2004) Epstein–Barr virus in pediatric multiple sclerosis. JAMA 291(15):1875–1879

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Munger KL (2007a) Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 61(4):288–299

    Article  PubMed  Google Scholar 

  • Ascherio A, Munger KL (2007b) Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol 61(6):504–513

    Article  CAS  PubMed  Google Scholar 

  • Ascherio A, Munger KL (2010) Epidemiology of multiple sclerosis: environmental factors, In: Luchinetti and Hohlfeld, eds. Multiple Sclerosis 3, 1st ed. Philadelphia: Saunders, Elsevier 57–82. Copyright © 2010 Elsevier. All rights reserved

  • Ascherio A et al (2001) Epstein–barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286(24):3083–3088

    Article  CAS  PubMed  Google Scholar 

  • Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347(12):911–920

    Article  PubMed  Google Scholar 

  • Banwell B et al (2007) Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurol 6(9):773–781

    Article  PubMed  Google Scholar 

  • Bech E et al (2002) A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology 58(1):31–36

    CAS  PubMed  Google Scholar 

  • Buljevac D et al (2005) Epstein–Barr virus and disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 76(10):1377–1381

    Article  CAS  PubMed  Google Scholar 

  • Cepok S et al (2005) Identification of Epstein–Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115(5):1352–1360

    CAS  PubMed  Google Scholar 

  • Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 15(10):1765–1777

    Article  CAS  PubMed  Google Scholar 

  • Clute SC et al (2005) Cross-reactive influenza virus-specific CD8 T cells contribute to lymphoproliferation in Epstein–Barr virus-associated infectious mononucleosis. J Clin Invest 115(12):3602–3612

    Article  CAS  PubMed  Google Scholar 

  • De Jager PL et al (2008) Integrating risk factors: HLA-DRB1*1501 and Epstein–Barr virus in multiple sclerosis. Neurology 70(13 Pt 2):1113–1118

    PubMed  Google Scholar 

  • DeLorenze GN et al (2006) Epstein–Barr virus and multiple sclerosis: evidence of association from a prospective study with long-term follow-up. Arch Neurol 63(6):839–844

    Article  PubMed  Google Scholar 

  • Ebers GC et al (1995) A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377(6545):150–151

    Article  CAS  PubMed  Google Scholar 

  • Farrell RA et al (2009) Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology 73(1):32–38

    Article  CAS  PubMed  Google Scholar 

  • Feng BJ et al (2007) Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer 121(7):1550–1555

    Article  CAS  PubMed  Google Scholar 

  • Friedman JE et al (2005) A randomized clinical trial of valacyclovir in multiple sclerosis. Mult Scler 11(3):286–295

    Article  CAS  PubMed  Google Scholar 

  • Gale CR, Martyn CN (1995) Migrant studies in multiple sclerosis. Prog Neurobiol 47:425–448

    Article  CAS  PubMed  Google Scholar 

  • Gratama JW, Ernberg I (1995) Molecular epidemiology of Epstein–Barr virus infection. Adv Cancer Res 67:197–255

    Article  CAS  PubMed  Google Scholar 

  • Gronen F et al (2006) Frequency analysis of HLA-B7-restricted Epstein–Barr virus-specific cytotoxic T lymphocytes in patients with multiple sclerosis and healthy controls. J Neuroimmunol 180(1–2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Hauser SL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688

    Article  CAS  PubMed  Google Scholar 

  • Hjalgrim H et al (2003) Characteristics of Hodgkin's lymphoma after infectious mononucleosis. N Engl J Med 349(14):1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Hollsberg P et al (2003) Altered CD8+T cell responses to selected Epstein–Barr virus immunodominant epitopes in patients with multiple sclerosis. Clin Exp Immunol 132:137–143

    Article  CAS  PubMed  Google Scholar 

  • Holmoy T et al (2004) Cerebrospinal fluid CD4+ T cells from a multiple sclerosis patient cross-recognize Epstein–Barr virus and myelin basic protein. J Neurovirology 10(5):278–283

    Article  CAS  Google Scholar 

  • Iwakiri D et al (2009) Epstein–Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from toll-like receptor 3. J Exp Med 206(10):2091–2099

    Article  CAS  PubMed  Google Scholar 

  • Jilek S et al (2008) Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131(Pt 7):1712–1721

    Article  PubMed  Google Scholar 

  • Kieff ED, Rickinson AB (2007) Epstein–Barr virus and its replication. In: Knipe DM et al (eds) Fields virology, vol 2, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 2603–2654

    Google Scholar 

  • Kim SK et al (2005) Private specificities of CD8 T cell responses control patterns of heterologous immunity. J Exp Med 201(4):523–533

    Article  CAS  PubMed  Google Scholar 

  • Kurtzke JF, Heltberg A (2001) Multiple sclerosis in the Faroe Islands: an epitome. J Clin Epidemiol 54(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Kutok JL, Wang F (2006) Spectrum of Epstein–Barr virus-associated diseases. Annu Rev Pathol 1:375–404

    Article  CAS  PubMed  Google Scholar 

  • Lang HL et al (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3(10):940–943

    Article  CAS  PubMed  Google Scholar 

  • Levin LI et al (2005) Temporal relationship between elevation of Epstein Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293(20):2496–2500

    Article  CAS  PubMed  Google Scholar 

  • Levin LI et al (2010) Primary infection with the Epstein–Barr virus and risk of multiple sclerosis. Ann Neurol. doi:10.1002/ana.21978

  • Lindsey JW et al (2008) Epstein–Barr virus genotypes in multiple sclerosis. Acta Neurol Scand 117(2):141–144

    CAS  PubMed  Google Scholar 

  • Lunemann JD et al (2006) Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129(Pt 6):1493–1506

    Article  PubMed  Google Scholar 

  • Lunemann JD et al (2008) EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-{gamma} and IL-2. J Exp Med 205(8):1763–1773

    Article  CAS  PubMed  Google Scholar 

  • Lycke J et al (1996) Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study. J Neurol 243:214–224

    Article  CAS  PubMed  Google Scholar 

  • Massa J et al (2007) Plasma titers of antibodies against Epstein–Barr virus BZLF1 and risk of multiple sclerosis. Neuroepidemiology 28(4):214–215

    Article  CAS  PubMed  Google Scholar 

  • Melbye M et al (1984) Early primary infection and high Epstein–Barr virus antibody titers in Greenland Eskimos at high risk for nasopharyngeal carcinoma. Int J Cancer 34:619–623

    Article  CAS  PubMed  Google Scholar 

  • Moormann AM et al (2007) Exposure to holoendemic malaria results in suppression of Epstein–Barr virus-specific T cell immunosurveillance in kenyan children. J Infect Dis 195(6):799–808

    Article  CAS  PubMed  Google Scholar 

  • Moutschen M et al (2007) Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein–Barr virus vaccine in healthy adults. Vaccine 25(24):4697–4705

    Article  CAS  PubMed  Google Scholar 

  • Munch M et al (1998) A single subtype of Epstein–Barr virus in members of multiple sclerosis clusters. Acta Neurol Scand 98:395–399

    Article  CAS  PubMed  Google Scholar 

  • Munger KL et al (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62:60–65

    CAS  PubMed  Google Scholar 

  • Munger KL et al (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296(23):2832–2838

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TR et al (2007) Multiple sclerosis after infectious mononucleosis. Arch Neurol 64(1):72–75

    Article  PubMed  Google Scholar 

  • Peferoen LA et al (2009) Epstein Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain. doi:10.1093/brain/awp296

  • Pender MP (2003) Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 24(11):584–588

    Article  CAS  PubMed  Google Scholar 

  • Pender MP et al (2009) Decreased T-cell reactivity to Epstein–Barr virus-infected lymphoblastoid cell lines in multiple sclerosis. J Neurol Neurosurg Psychiatry 80(5):498–505

    Article  CAS  PubMed  Google Scholar 

  • Pohl D et al (2006) High seroprevalence of Epstein–Barr virus in children with multiple sclerosis. Neurology 67(11):2063–2065

    Article  CAS  PubMed  Google Scholar 

  • Ramagopalan SV et al (2009) Association of infectious mononucleosis with multiple sclerosis. A population-based study. Neuroepidemiology 32(4):257–262

    Article  PubMed  Google Scholar 

  • Rand KH et al (2000) Epstein–Barr virus nuclear antigen-1 (EBNA-1) associated oligoclonal bands in patients with multiple sclerosis. J Neurol Sci 173(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Rickinson AB, Kieff E (2007) Epstein–Barr virus. In: Knipe DM et al (eds) Fields virology, vol 2, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 2655–2700

    Google Scholar 

  • Rowe M et al (2009) Burkitt's lymphoma: the rosetta stone deciphering Epstein–Barr virus biology. Semin Cancer Biol 19(6):377–388

    Article  PubMed  Google Scholar 

  • Sargsyan SA et al (2010) Absence of Epstein–Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology. doi:10.1212/WNL.0b013e3181d865a1

  • Serafini B et al (2007) Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J Exp Med 204(12):2899–2912

    Article  CAS  PubMed  Google Scholar 

  • Simon KC et al (2007) Variation in the Epstein–Barr virus receptor, CR2, and risk of multiple sclerosis. Mult Scler 13(7):947–948

    Article  PubMed  Google Scholar 

  • Sokal EM et al (2007) Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J Infect Dis 196(12):1749–1753

    Article  PubMed  Google Scholar 

  • Sundstrom P et al (2004) An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology 62(12):2277–2282

    CAS  PubMed  Google Scholar 

  • Sutkowski N et al (2001) Epstein–Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15(4):579–589

    Article  CAS  PubMed  Google Scholar 

  • Tai A et al (2008) Human endogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Mult Scler 14(9):1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K et al (2006) Prevalence of Epstein–Barr virus in Japan: trends and future prediction. Pathol Int 56(3):112–116

    Article  PubMed  Google Scholar 

  • Thacker EL et al (2006) Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol 59(3):499–503

    Article  PubMed  Google Scholar 

  • Thorley-Lawson DA (2001) Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • van Sechel AC et al (1999) EBV-induced expression and HLA-DR-restricted presentation by human B cells of alpha B-crystallin, a candidate autoantigen in multiple sclerosis. J Immunol 162(1):129–135

    PubMed  Google Scholar 

  • Vaughn JH et al (1996) An Epstein–Barr virus-related cross reactive autoimmune response in multiple sclerosis in Norway. J Neuroimmunol 69:95–102

    Article  Google Scholar 

  • Wagner H-J et al (2004) Plasma viral load of Epstein–Barr virus and risk of multiple sclerosis. Eur J Neurol 11:833–834

    Article  PubMed  Google Scholar 

  • Wandinger K et al (2000) Association between clinical disease activity and Epstein–Barr virus reactivation in MS. Neurology 55(2):178–184

    CAS  PubMed  Google Scholar 

  • Warner HB, Carp RI (1981) Multiple sclerosis and Epstein–Barr virus (letter). Lancet 2:1290

    Article  CAS  PubMed  Google Scholar 

  • Willis SN et al (2009) Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain. Brain 132(Pt 12):3318–3328

    Article  PubMed  Google Scholar 

  • Zaadstra BM et al (2008) Selective association of multiple sclerosis with infectious mononucleosis. Mult Scler 14(3):307–313

    Article  CAS  PubMed  Google Scholar 

  • Zivadinov R et al (2009) Epstein–Barr Virus is associated with gray matter atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 80(6):620–625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Leslie Unger for technical assistance in the preparation of this manuscript.

Disclaimers

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ascherio.

Additional information

Guarantors of the work: Alberto Ascherio and Kassandra Munger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ascherio, A., Munger, K.L. Epstein–Barr Virus Infection and Multiple Sclerosis: A Review. J Neuroimmune Pharmacol 5, 271–277 (2010). https://doi.org/10.1007/s11481-010-9201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9201-3

Keywords

Navigation