Skip to main content
Log in

Equivalent Circuit Method Analysis of Graphene-Metamaterial (GM) Absorber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents an effective method to model and analyze graphene-metamaterial (GM) absorbers by using an equivalent circuit model. A reliable and closed formula to describe the absorption mechanism of the GM structure was derived from this approach. With the obtained expressions, the effect of the graphene chemical potential on the absorber’s resonance frequency is able to be predicted. In order to verify this proposed equivalent circuit method, an absorber consists of metamaterial and graphene was simulated and the physical mechanism was well explained. This method provides an effective way to analyze multilayered GM absorbers for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xiong H, Tang MC, Hong JS (2015) Analysis of single-layer metamaterial absorber with reflection theory. J Appl Phys 117(15):154906

    Article  Google Scholar 

  2. Xiong H, Zhong LL, Luo CM, Hong JS (2015) Dual-band polarization-/angle-insensitive metamaterial absorber. AIP Adv 5(6):067162

    Article  Google Scholar 

  3. Xiong H, Hong JS, Luo CM, Zhong LL (2013) An ultrathin and broadband metamaterial absorber using multi-layer structures. J Appl Phys 114(6):064109

    Article  Google Scholar 

  4. Costa F, Monorchio A, Manara G (2010) Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans Antennas Propag 58(5):1551–1558

    Article  Google Scholar 

  5. Sun LK, Cheng HF, Zhou YJ, Wang J (2011) Low-frequency and broad band metamaterial absorber: design, fabrication, and characterization. Appl Phys A Mater Sci Process 105(1):49–53

    Article  CAS  Google Scholar 

  6. Zhang HB, Zhou PH, Deng LW, Xie JL, Liang DF, Deng LJ (2012) Frequency-dispersive resistance of high impedance surface absorber with trapezoid-coupling pattern. J Appl Phys 112(1):014106

    Article  Google Scholar 

  7. Costa F, Genovesi S, Monorchio A, Manara G (2013) A circuit-based model for the interpretation of perfect metamaterial absorbers. IEEE Trans Antennas Propag 61(3):1201–1209

    Article  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  9. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16(10):7181–7188

    Article  Google Scholar 

  10. D'Aloia AG, D'Amore M, Sarto MS (2016) Adaptive broadband radar absorber based on tunable graphene. IEEE Trans Antennas Propag 64(6):2527–2531

    Article  Google Scholar 

  11. He SL, Chen T (2013) Broadband THz absorbers with graphene-based anisotropic metamaterial films. IEEE Trans Terahertz Sci Technol 3(6):757–763

    Article  CAS  Google Scholar 

  12. Xu BZ, Gu CQ, Li Z, Liu LL, Niu ZY (2014) Circuit model for graphene-based absorber at low-terahertz frequencies. J Phys D Appl Phys 47(25):255103

    Article  Google Scholar 

  13. Koester SJ, Li M (2012) High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl Phys Lett 100(17):171107

    Article  Google Scholar 

  14. Vasic B, Gajic R (2013) Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies. Appl Phys Lett 103(26):261111

    Article  Google Scholar 

  15. Cai Y, Zhu J, Liu QH (2015) Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett 106(4):043105

    Article  Google Scholar 

  16. Jia XL, Wang XO, Meng QX, Yuan CX, Zhou ZX (2016) A numerical study of dynamic tunability of perfect absorption with temperature in the visible region based on a nanostructure containing multilayer graphene. Opt Commun 372:172–179

    Article  CAS  Google Scholar 

  17. Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20(27):28017–28024

    Article  CAS  Google Scholar 

  18. Bludov YV, Peres NMR, Vasilevskiy MI (2013) Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. J Opt 15(11):114004

    Article  Google Scholar 

  19. Wang ZJ, Zhou M, Lin X, Liu HX, Wang HP, Yu FX, Lin SS, Li EP, Chen HS (2014) A circuit method to integrate metamaterial and graphene in absorber design. Opt Commun 329:76–80

    Article  CAS  Google Scholar 

  20. Huang XJ, Zhang X, Hu ZR, Aqeeli M, Alburaikan A (2015) Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach. IET Microw Antennas Propag 9(4):307–312

    Article  Google Scholar 

  21. Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen AV, Tretyakov SA (2008) Simple and accurate analytical model of planar grids and high-impedance surfaces, comprising metal strips or patches. IEEE Trans Antennas Propag 56(6):1624–1632

    Article  Google Scholar 

  22. Tassin P, Koschny T, Soukoulis C (2012) Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials. Physica B 407(20):4062–4065

    Article  CAS  Google Scholar 

  23. Andryieuski A, Lavrinenko AV (2013) Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express 21(7):9144–9155

    Article  CAS  Google Scholar 

  24. Ning RX, Liu SB, Zhang HF, Kong XK, Bian BR, Bao J (2014) Wideband absorption in fibonacci quasi-periodic graphene-based hyperbolic metamaterials. J Opt 16(12):125108

    Article  Google Scholar 

  25. Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T (2014) Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Express 22(19):22743–22752

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61501067, 61501068, 61471072, and 61661012), Foundation and Advanced Research Projects of Chongqing Municipal Science and Technology Commission (Grant Nos. Cstc2016jcyjA0377 and Cstc2015jcyjA40001), and Opening Project of Guangxi College Key Laboratory of Microwave and Optical Wave Applications Technology (Grant No. MLLAB2016001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Tang, MC., Li, M. et al. Equivalent Circuit Method Analysis of Graphene-Metamaterial (GM) Absorber. Plasmonics 13, 857–862 (2018). https://doi.org/10.1007/s11468-017-0581-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0581-6

Keywords

Navigation