Skip to main content
Log in

Dual-Band Infrared Near-Perfect Absorption by Fabry-Perot Resonances and Surface Phonons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, we present a simple absorber design which enables dual-band near-perfect absorption at infrared (IR) frequencies. The absorber is an unpatterned hBN/dielectric/hBN triple layer, with a 1150-nm-thick hBN film as the top layer, a 850-nm-thick dielectric film as the middle layer, and a hBN substrate. Unlike the metal/dielectric/metal triple layer, it is found that the high efficiency absorption at specific wavelengths is mainly caused by two mechanisms: Fabry-Perot (FP) resonances and surface phonons. The absorption response is found sensitive to the top and middle layers. The two mechanisms can be coupled to affect the absorption spectra by choosing a proper thickness of the top and middle layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Teperik TV, Garcia de Abajo FJ, Borisov AG, Abdelsalam M, Bartlett PN, Sugawara Y, Baumberg JJ (2008) Omnidirectional absorption in nanostructured metal surfaces. Nature Photon. 2:299–301

    Article  CAS  Google Scholar 

  2. Kravets VG, Schedin F, Jalil R, Britnell L, Gorbachev RV, Ansell D, Thackray B, Novoselov KS, Geim AK, Kabashin AV, Grigorenko AN (2013) Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nature Mater. 12:304–309

    Article  CAS  Google Scholar 

  3. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  4. Liu X, Tyler T, Starr T, Anthony FS, Jokerst NM, Willie JP (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901

    Article  Google Scholar 

  5. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  6. Diem M, Koschny T, Soukoulis CM (2009) Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B 79:033101

    Article  Google Scholar 

  7. Greffet JJ, Carminati R, Joulain K, Mulet JP, Mainguy SP, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416(6876):61–64

    Article  CAS  Google Scholar 

  8. Zhang BX, Zhao YH, Hao QZ, Kiraly B, Khoo IC, Chen SF, Huang TJ (2001) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19(16):15221–15228

    Article  Google Scholar 

  9. Hao JM, Wang J, Liu XL, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104

    Article  Google Scholar 

  10. Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 18:17413–17420

    Article  Google Scholar 

  11. Thongrattanasiri S, Koppens FHL, de Abajo FJG (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:047401

    Article  Google Scholar 

  12. Wu J, Wang H, Jiang L, Guo J, Dai X, Xiang Y, Wen S (2016) Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range. J Appl Phys 119(20):203107

    Article  Google Scholar 

  13. Wu J, Jiang L, Guo J, Dai X, Xiang Y, Wen S (2016) Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal. Opt Express 24(15):17103–17114

    Article  CAS  Google Scholar 

  14. Shu S, Li Z, Li YY (2013) Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime. Opt Express 21(21):25307–25315

    Article  Google Scholar 

  15. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nature Photon 7(12):948–957

    Article  CAS  Google Scholar 

  16. Dai S, Fei Z, Ma Q, Rodin AS, Wagner M, Mcleod AS, Liu MK, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto AH, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2014) Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343(6175):1125–1129

    Article  CAS  Google Scholar 

  17. Caldwell JD, Kretinin AV, Chen Y, Giannini V, Fogler MM, Francescato Y, Ellis CT, Tischler JG, Woods CR, Giles AJ, Hong M, Watanabe K, Taniguchi T, Maier SA, Novoselov KS (2014) Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 5:5221

    Article  CAS  Google Scholar 

  18. Xu XG, Ghamsari BG, Jiang JH, Gilburd L, Andreev GO, Zhi C, Bando Y, Golberg D, Berni P, Walker GC (2014) One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat Commun 5:4782

    Article  CAS  Google Scholar 

  19. Jia Y, Zhao H, Guo Q, Wang X, Wang H, Xia F (2015) Tunable plasmon–phonon polaritons in layered graphene–hexagonal boron nitride heterostructures. ACS Photon. 2(7):907–912

    Article  CAS  Google Scholar 

  20. Shi Z, Bechtel HA, Berweger S, Sun Y, Zeng B, Jin C, Chang H, Martin MC, Raschke MB, Wang F (2015) Amplitude-and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photon 2(7):790–796

    Article  CAS  Google Scholar 

  21. Caldwell JD, Novoselov KS (2015) Van der Waals heterostructures: mid-infrared nanophotonics. Nature Mater. 14(4):364–366

    Article  CAS  Google Scholar 

  22. Jacob Z (2014) Nanophotonics: hyperbolic phonon-polaritons. Nature Mater. 13:1081–1083

    Article  CAS  Google Scholar 

  23. Dai S, Ma Q, Liu MK, Andersen T, Fei Z, Goldflam M, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen GCAM, Zhu SE, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nature Nanotech 10:682–686

    Article  CAS  Google Scholar 

  24. Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2014) Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Mater 14:421–425

    Article  Google Scholar 

  25. Kumar A, Low T, Fung KH, Avouris P, Fang NX (2015) Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett 15:3172–3180

    Article  CAS  Google Scholar 

  26. Huang CP, Wang SB, Yin XG, Zhang Y, Liu H, Zhu YY, Chan CT (2012) Enhanced electromagnetic pressure in a sandwiched reflection grating. Phys Rev B 86(8):085446

    Article  Google Scholar 

  27. Huang CP, Yin XG, Zhang Y, Wang SB, Zhu YY, Liu H, Chan CT (2012) Deep subwavelength Fabry-Perot-like resonances in a sandwiched reflection grating. Phys Rev B 85(23):235410

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No. 61505111), and the Science and Technology Project of Shenzhen (Grant No. JCYJ20150324141711667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjiang Xiang.

Additional information

Jipeng Wu and Jun Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guo, J., Wang, X. et al. Dual-Band Infrared Near-Perfect Absorption by Fabry-Perot Resonances and Surface Phonons. Plasmonics 13, 803–809 (2018). https://doi.org/10.1007/s11468-017-0575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0575-4

Keywords

Navigation