Skip to main content
Log in

Direct Observation of Surface Plasmon Polariton Propagation and Interference by Time-Resolved Imaging in Normal-Incidence Two Photon Photoemission Microscopy

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Time-resolved imaging of the propagation and interference of isolated ultrashort surface plasmon polariton wave packets is demonstrated using two photon photoemission microscopy. The group- and phase velocity of individual wave packets are determined experimentally. Using two counter-propagating surface plasmon polariton pulses, the transient formation of a standing surface plasmon polariton wave is imaged in time and space. We demonstrate that using a normal incidence geometry in time-resolved photoemission microscopy provides great advantages for in-situ imaging of surface plasmon polaritons in arbitrary plasmonic structures. A simple 1D wave-simulation is used to confirm the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311 (5758):189–193

    Article  CAS  Google Scholar 

  2. Atwater HA (2007) The Promise of Plasmonics. Sci Am 296:56–62

    Article  CAS  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  4. Specht M, Pedarnig JD, Heckl WM, Hansch TW (1992) Scanning Plasmon near-Field Microscope. Phys Rev Lett 68:476–479

    Article  CAS  Google Scholar 

  5. Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg F, Leitner A, Krenn J (2008) Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B-Adv 149:220–229

    Article  CAS  Google Scholar 

  6. Sandtke M, Engelen R, Schoenmaker H, Attema I, Dekker H, Cerjak I, Korterik J, Segerink F, Kuipers L (2008) Novel instrument for surface plasmon polariton tracking in space and time. Rev Sci Instrum 79:013704

    Article  CAS  Google Scholar 

  7. Gorodetski Y, Chervy T, Wang S, Hutchinson J, Drezet A, Genet C, Ebbesen TW (2016) Tracking surface plasmon pulses using ultrafast leakage imaging. Optica 3(1):48–53

    Article  CAS  Google Scholar 

  8. Schmidt O, Bauer M, Wiemann C, Porath R, Scharte M, Andreyev O, Schönhense G, Aeschlimann M (2002) Time-Resolved Two Photon Photoemission Electron Microscopy. Appl Phys B 74:223–227

    Article  CAS  Google Scholar 

  9. Cinchetti M, Gloskovskii A, Nepjiko S A, Schönhense G, Rochholz H, Kreiter M (2005) Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields. Phys Rev Lett 95:047601

    Article  CAS  Google Scholar 

  10. Chelaru L I, Horn-von Hoegen M, Thien D, Meyer zu Heringdorf FJ (2006) Fringe fields in nonlinear photoemission microscopy. Phys. Rev. B 73:115416

    Article  Google Scholar 

  11. Kubo A, Pontius N, Petek H (2007) Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface. Nano Lett 7:470

    Article  CAS  Google Scholar 

  12. Chelaru L, Meyer zu Heringdorf F J (2007) In situ Monitoring of Surface Plasmons in Single-Crystalline Ag Nanowires. Surf. Sci. 601:4541

    Article  CAS  Google Scholar 

  13. Buckanie N, Kirschbaum P, Sindermann S, zu Heringdorf MF-J (2013) Interaction of Light and Surface Plasmon Polaritons in Ag Islands Studied by Nonlinear Photoemission Microscopy. Ultramicroscopy 130:49–53

    Article  CAS  Google Scholar 

  14. Creath K, Wyant J (1992) Moiré and Fringe Projection Techniques in Optical Shop Testing. Wiley Chichester, United Kingdom

    Google Scholar 

  15. Meyer zu Heringdorf F J, Chelaru L, Möllenbeck S, Thien D, Horn von Hoegen M (2007) Femtosecond Photoemission Electron Microscopy. Surf Sci 601:4700–4705

    Article  CAS  Google Scholar 

  16. Lemke C, Schneider C, Leiner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M, Aeschlimann M (2013) Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices. Nano Lett 13:1053–1058

    Article  CAS  Google Scholar 

  17. Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P (2015) Ultrafast Imaging of Surface Plasmons Propagating on a Gold Surface. Nano Lett 15:3472–3478

    Article  CAS  Google Scholar 

  18. Lemke C, Leißner T, Jauernik S, Klick A, Fiutowski J, Kjelstrup-Hansen J, Rubahn HG, Bauer M (2012) Mapping Surface Plasmon Polariton Propagation via Counter-Propagating Light Pulses. Optics Express 20:12877–12884

    Article  Google Scholar 

  19. Lemke C, Leißner T., Evlyukhin A, Radke JW, Klick A, Fiutowski J., Kjelstrup-Hansen J, Rubahn HG, Chichkov BN, Reinhardt C, Bauer M (2014) The Interplay between Localized and Propagating Plasmonic Excitations Tracked in Space and Time. Nano Lett 14:2431–2435

    Article  CAS  Google Scholar 

  20. Kahl P, Wall S, Witt C, Schneider C, Bayer D, Fischer A, Melchior P, Horn-von Hoegen M, Aeschlimann F J (2014) Normal-Incidence Photoemission Electron Microscopy (NI-PEEM) for Imaging Surface Plasmon Polaritons. Plasmonics 9:1401–1407

    Article  CAS  Google Scholar 

  21. Meyer zu Heringdorf F J, Kahl P, Makris A, Sindermann S, Podbiel D, Horn-von Hoegen M (2015) Signatures of Plasmoemission in Two Photon Photoemission Electron Microscopy. Proc SPIE 9361:93610W

    Article  Google Scholar 

  22. Wehner M U, Ulm M, Wegener M (1997) Scanning Interferometer Stabilized by use of Pancharatnam’s Phase. Opt Lett 22:1455–1457

    Article  CAS  Google Scholar 

  23. Podbiel D, Kahl P, Meyer zu Heringdorf F J (2016) Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump-probe experiment with adjustable polarization. Appl Phys B 122:90

    Article  Google Scholar 

  24. Johnson P B, Christy R W (1972) Optical Constants of the Noble Metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  25. Olmon R, Slovick B, Johnson T, Shelton D, Oh S H, Boreman GRMB (2012) Optical dielectric function of gold. Phys Rev B 86:235147

    Article  Google Scholar 

  26. Maier SA (2007) Plasmonics, Springer

  27. Pitarke J M, Silkin V M, Chulkov E V, Echenique P M (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70:1–87

    Article  CAS  Google Scholar 

  28. Zhang L, Kubo A, Wang L, Petek H, Seideman T (2013) Universal aspects of ultrafast optical pulse scattering by a nanoscale asperity. J Phys Chem C 117:18648–18652

    Article  CAS  Google Scholar 

  29. Kaiser T, Falkner M, Qi J, Klein A, Steinert M, Menzel C, Rockstuhl C, Pertsch T Characterization of a Circular Optical Nanoantenna by Nonlinear Photoemission Electron Microscopy

  30. Radha B, Arif M, Datta R, Kundu T K, Kulkarni G U (2010) Movable Au Microplates as Fluorescence Enhancing Substrates for Live Cells. Nano Res 3:738– 747

    Article  CAS  Google Scholar 

  31. Schmidt T, Heun S, Slezak J, Diaz K, Prince J, Lilienkamp G, Bauer E (1998) SPELEEM: Combining LEEM and Spectroscopic Imaging. Surf Rev Lett 5(6):1287

    Article  CAS  Google Scholar 

  32. Xu L, Tempea G, Poppe A, Lenzner M, Spielmann C, Krausz F, Stingl A, Ferencz K (1997) High-power sub-10-fs Ti:sapphire oscillators. Appl Phys B 65:151–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Harald Giessen and Bettina Frank from the University of Stuttgart for providing us with the high-quality Au platelets. Financial support from the Deutsche Forschungsgemeinschaft through programs SFB616 and SPP1391 and fruitful discussions within SFB1242 are gratefully acknowledged. DK acknowledges funding from the Irish Research Council and the Marie Curie Actions ELEVATE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Podbiel or Frank Meyer zu Heringdorf.

Additional information

Philip Kahl and Daniel Podbiel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahl, P., Podbiel, D., Schneider, C. et al. Direct Observation of Surface Plasmon Polariton Propagation and Interference by Time-Resolved Imaging in Normal-Incidence Two Photon Photoemission Microscopy. Plasmonics 13, 239–246 (2018). https://doi.org/10.1007/s11468-017-0504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0504-6

Keywords

Navigation