Skip to main content
Log in

Tunable Fano Resonances in Mid-Infrared Waveguide-Coupled Otto Configuration

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A planar silicon carbide/dielectric multilayer structure is investigated in Otto geometry, where surface phonon polaritons and planar waveguide mode can be coupled to realize Fano resonances under transverse magnetic polarization. The resonance coupling is analytically demonstrated using the coupled harmonic oscillator model and numerically presented through rigorous coupled-wave analysis calculations, which shows that the coupling strength between different resonances and the resonant wavelength matching condition plays an important role in the bandwidth and position of the Fano resonance (FR); the magnetic field distribution was also shown to explain the origin of FRs qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  CAS  Google Scholar 

  2. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  3. Khan AD, Amin M, Iqbal MY, Ali A, Khan R, Khan SD (2015) Twin dipole Fano resonances in symmetric three-layered plasmonic nanocylinder. Plasmonics 10(4):963–970

    Article  CAS  Google Scholar 

  4. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Fatti ND, Vallée F, Brevet PF (2010) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401

    Article  Google Scholar 

  5. Muhammad N, Khan AD (2015) Tunable Fano resonances and electromagnetically induced transparency in all-dielectric holey block. Plasmonics 10(6):1687–1693

    Article  CAS  Google Scholar 

  6. Špačková B, Lebrušková P, Šípová H, Kwiecien P, Richter I, Homola J (2014) Ambiguous refractive index sensitivity of Fano resonance on an array of gold nanoparticles. Plasmonics 9(4):729–735

    Article  Google Scholar 

  7. Lodewijks K, Ryken J, Roy WV, Borghs G, Lagae L, Dorpe PV (2013) Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications. Plasmonics 8(3):1379–1385

    Article  CAS  Google Scholar 

  8. Zhao WY, Ju DQ, Jiang YY (2015) Sharp Fano resonance within bi-periodic silver particle array and its application as plasmonic sensor with ultra-high figure of merit. Plasmonics 10(2):469–474

    Article  CAS  Google Scholar 

  9. Chang Y, Jiang YY (2014) Highly sensitive plasmonic sensor based on Fano resonance from silver nanoparticle heterodimer array on a thin silver film. Plasmonics 9(3):499–505

    Article  CAS  Google Scholar 

  10. Miroshnichenko AE, Kivshar Y, Etrich C, Pertsch T, Iliew R, Lederer F (2009) Dynamics and instability of nonlinear Fano resonances in photonic crystals. Phys Rev A 79:013809

    Article  Google Scholar 

  11. Soljaic M, Joannopoulos JD (2004) Enhancement of nonlinear effects using photonic crystals. Nature Mater 3:211–219

    Article  Google Scholar 

  12. Rybin MV, Khanikaev AB, Inoue M, Samusev KB, Steel MJ, Yushin G, Limonov MF (2009) Fano resonance between Mie and Bragg scattering in photonic crystals. Phys Rev Lett 103:023901

    Article  CAS  Google Scholar 

  13. Khan AD, Miano G (2013) Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8(2):1023–1034

    Article  CAS  Google Scholar 

  14. Zhao KJ, Huo YP, Liu TZ, Junna Li JN, He B, Zhao T, Liu L, Li Y (2015) Manipulation of electrical field enhancements and Fano resonances in nanoellipsoid/ring plasmonic cavities. Plasmonics 10(5):1041–1048

    Article  Google Scholar 

  15. Golmohammadi S, Ahmadivand A (2014) Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: a route to design efficient and precise biochemical sensors. Plasmonics 9(6):1447–1456

    Article  CAS  Google Scholar 

  16. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75

    Article  CAS  Google Scholar 

  17. Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  CAS  Google Scholar 

  18. Guo J, Jiang LY, Dai XY, Xiang YJ (2016) Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength. Opt Express 24(5):4740–4748

    Article  CAS  Google Scholar 

  19. Pradarutti B, Torosyan G, Theuer M, Beigang R (2010) Fano profiles in transmission spectra of terahertz radiation through one-dimensional periodic metallic structures. Appl Phys Lett 97:244103

    Article  Google Scholar 

  20. Zhao ZY, Zhao HW, Peng W, Shi WZ (2015) Polarization dependence of terahertz Fabry–Pérot resonance in flexible complementary metamaterials. Plasmonics 10(6):158–1592

    Google Scholar 

  21. Christ A, Ekinci Y, Solak HH, Gippius NA, Tikhodeev SG, Martin OJF (2007) Controlling the Fano interference in a plasmonic lattice. Phys Rev B 76:201405

    Article  Google Scholar 

  22. Kim M, Lee S, Kim S (2015) Plasmon-induced transparency in coupled graphene gratings. Plasmonics 10(6):1557–1564

    Article  CAS  Google Scholar 

  23. Lombardi A, Grzelczak MP, Crut A, Maioli P, Pastoriza-Santos I, Liz-Marzán LM, Fatti ND, Vallée F (2013) Optical response of individual Au-Ag@SiO2 heterodimers. ACS Nano 7(3):2522–2531

    Article  CAS  Google Scholar 

  24. Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6(6):5130–5137

    Article  CAS  Google Scholar 

  25. Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11):9989–9995

    Article  CAS  Google Scholar 

  26. Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 5(3):2042–2050

    Article  CAS  Google Scholar 

  27. Chen YG, Francescato Y, Caldwell JD, Giannini V, Maß TWW, Glembocki OJ, Bezares FJ, Taubner T, Kasica R, Hong MH, Maier SA (2014) Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications. ACS Photonics 1:718–724

    Article  CAS  Google Scholar 

  28. Caldwell JD, Glembocki OJ, Francescato Y, Sharac N, Giannini V, Bezares FJ, Long JP, Owrutsky JC, Vurgaftman I, Tischler JG, Wheeler VD, Bassim ND, Shirey LM, Kasica R, Maier SA (2013) Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett 13(8):3690–3697

    Article  CAS  Google Scholar 

  29. Streyer W, Law S, Rosenberg A, Roberts C, Podolskiy VA, Hoffman AJ, Wasserman D (2014) Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide. Appl Phys Lett 104:131105

    Article  Google Scholar 

  30. Ito K, Matsui T, Iizuka H (2014) Thermal emission control by evanescent wave coupling between guided mode of resonant grating and surface phonon polariton on silicon carbide plate. Appl Phys Lett 104:051127

    Article  Google Scholar 

  31. D'Aguanno G (2015) Coherent thermal emission near 10.6 μm mediated by localized phonon-polariton modes in microparticle arrays. Appl Phys Lett 106:031110

    Article  Google Scholar 

  32. Neuner B III, Korobkin D, Fietz C, Carole D, Ferro G, Shvets G (2009) Critically coupled surface phonon-polariton excitation in silicon carbide. Opt Lett 34(17):2667–2669

    Article  Google Scholar 

  33. Kim HC, Cheng X (2010) Infrared dipole antenna enhanced by surface phonon polaritons. Opt Lett 35(22):3748–3750

    Article  Google Scholar 

  34. Wang T, Li PN, Hauer B, Chigrin DN, Taubner T (2013) Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett 13(11):5051–5055

    Article  CAS  Google Scholar 

  35. Zheng GG, Chen YY, Bu LB, Xu LH, Su W (2016) Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region. Opt Lett 41(7):1582–1585

    Article  Google Scholar 

  36. Paarmann A, Razdolski I, Melnikov A, Gewinner S, Schöllkopf W, Wolf M (2015) Second harmonic generation spectroscopy in the Reststrahl band of SiC using an infrared free-electron laser. Appl Phys Lett 107:081101

    Article  Google Scholar 

  37. Spann BT, Compton R, Ratchford D, Long JP, Dunkelberger AD, Klein PB, Giles AJ, Caldwell JD, Owrutsky JC (2016) Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys Rev B 93:085205

    Article  Google Scholar 

  38. Dmitruk N, Barlas T, Dmitruk I, Kutovyi S, Berezovska N, Sabataityte J, Simkiene I (2010) IR reflection, attenuated total reflection, and Raman scattering of porous polar III-V semiconductors. Phys Status Solidi B 247(4):955–961

    CAS  Google Scholar 

  39. Hussein RH, Pagès O, Firszt F, Paszkowicz W, Maillard A (2013) Near-forward Raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy. Appl Phys Lett 103:071912

    Article  Google Scholar 

  40. Assin P, Zhang L, Koschny T, Economou E, Soukoulis C (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901

    Article  Google Scholar 

  41. Hayashi S, Nesterenko DV, Sekkat Z (2015) Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing. J Phys D Appl Phys 48:325303

    Article  Google Scholar 

  42. Hayashi S, Nesterenko DV, Sekkat Z (2015) Fano resonance and plasmon induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl Phys Express 8:022201

    Article  Google Scholar 

  43. Mahmoud RMA (2015) Plasmonic absorption enhancement in a dye-sensitized solar cell using a Fourier harmonics grating. Plasmonics 10(1):151–156

    Article  Google Scholar 

  44. Perino M, Pasqualotto E, Scaramuzza M, Toni AD, Paccagnella A (2014) Characterization of grating coupled surface plasmon polaritons using diffracted rays transmittance. Plasmonics 9(5):1103–1111

    Article  CAS  Google Scholar 

  45. Song MW, Yu HL, Wang CT, Yao N, Pu MB, Luo J, Zhang ZJ, Luo XG (2015) Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity. Opt Express 23(3):2895–2903

    Article  CAS  Google Scholar 

  46. Mishra PK, Sahoo B (2012) Growth of amorphous carbon and graphene on pulse laser deposited SiC films and their characterization studies. Laser Part Beams 31:63–71

    Article  Google Scholar 

  47. Friedmann TA, Mirkarimi PB, Medlin DL, McCarty KF, Klaus EJ, Boehme DR, Johnsen HA, Mills MJ, Ottesen DK, Barbour JC (1994) Ion-assisted pulsed laser deposition of cubic boron nitride films. J Appl Phys 76:3088

    Article  CAS  Google Scholar 

  48. Nayfeh OM, Birdwell AG, Tan C, Dubey M, Gullapalli H, Liu Z, Reddy ALM, Ajayan PM (2013) Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films. Appl Phys Lett 102:103115

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 61203211, 41675133, 41675154), the Six Major Talent Peak expert of Jiangsu province (2015-XXRJ-014), the Natural Science Foundation of the Jiangsu Province (Grant No. BK20141483), and the Innovation Project of Graduate Education in Jiangsu Province during 2016 (KYLX16_0954).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaige Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Zhang, H., Bu, L. et al. Tunable Fano Resonances in Mid-Infrared Waveguide-Coupled Otto Configuration. Plasmonics 13, 215–220 (2018). https://doi.org/10.1007/s11468-017-0501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0501-9

Keywords

Navigation