Skip to main content
Log in

New Type Design of the Triple-Band and Five-Band Metamaterial Absorbers at Terahertz Frequency

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A new scheme to achieve a simple design of triple-band metamaterial absorber at terahertz frequency is presented. In this scheme, we employ a traditional sandwich structure, which is consisted of a metallic resonator and an appropriate thickness of the dielectric layer backed with an opaque metallic board, as the research object. Three strong but discrete resonance peaks with the narrow bandwidths and high absorptivities are realized. The combination of the dipolar resonance, LC (inductor-capacitor circuit) resonance, and the surface resonance of the metallic resonator determines the triple-band absorption. Numerical results also show that the frequencies of the three absorption bands and the number of the resonance peaks can be effectively tuned by adjusting or changing the geometric parameters of the metallic resonator. Moreover, we present a simple design of five-band terahertz absorber by further optimizing the sizes of the metallic elements in the top layer of the metamaterial. The design of the unit structures will assist in designing innovative absorbing devices for spectroscopy imaging, detection, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  2. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  3. Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96:251104

    Article  Google Scholar 

  4. Grant J, Ma Y, Saha S, Lok LB, Khalid A, Cumming DRS (2011) Polarization insensitive terahertz metamaterial absorber. Opt Lett 36:1524–1526

    Article  CAS  Google Scholar 

  5. Huang L, Chowdhury DR, Ramani S, Reiten MT, Luo SN, Azad AK, Taylor AJ, Chen HT (2012) Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl Phys Lett 101:101102

    Article  Google Scholar 

  6. Li Z, Butun S, Aydin K (2014) Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8:8242–8248

    Article  CAS  Google Scholar 

  7. Shchegolkov DY, Azad AK, Ohara JF, Simakov EI (2010) Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Phys Rev B 82:205117

    Article  Google Scholar 

  8. Chen WC, Cardin A, Koirala M, Liu X, Tyler T, West KG, Bingham CM, Starr T, Starr AF, Jokerst NM, Padilla WJ (2016) Role of surface electromagnetic waves in metamaterial absorbers. Opt Express 24:6783–6792

    Article  CAS  Google Scholar 

  9. Guddala S, Kumar R, Ramakrishna SA (2015) Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Appl Phys Lett 106:111901

    Article  Google Scholar 

  10. Chen K, Dao TD, Ishii S, Aono M, Nagao T (2015) Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv Funct Mater 25:6637–6643

    Article  CAS  Google Scholar 

  11. Valagiannopoulos CA, Tukiainen A, Aho T, Niemi T, Guina M, Tretyakov SA, Simovski CR (2015) Perfect magnetic mirror and simple perfect absorber in the visible spectrum. Phys Rev B 91:115305

    Article  Google Scholar 

  12. Zhao X, Zhang J, Fan K, Duan G, Metcalfe GD, Wraback M, Zhang X, Averitt RD (2016) Nonlinear terahertz metamaterial perfect absorbers using GaAs. Photon Res 4:A16–A21

    Article  CAS  Google Scholar 

  13. Bhattarai K, Ku Z, Silva S, Jeon J, Kim JO, Lee SJ, Urbas A, Zhou J (2015) A large-area, mushroom-capped plasmonic perfect absorber: refractive index sensing and fabry-perot cavity mechanism. Adv Opt Mater 3:1779–1786

    Article  CAS  Google Scholar 

  14. Dao TD, Chen K, Ishii S, Ohi A, Nabatame T, Kitajima M, Nagao T (2015) Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers. ACS Photon 2:964–970

    Article  CAS  Google Scholar 

  15. Akselrod GM, Huang J, Hoang TB, Bowen PT, Su L, Smith DR, Mikkelsen MH (2015) Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater 27:8028–8034

    Article  CAS  Google Scholar 

  16. He J, Ding P, Wang J, Fan C, Liang E (2015) Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt Express 23:6083–6091

    Article  CAS  Google Scholar 

  17. Luo S, Zhao J, Zuo D, Wang X (2016) Perfect narrow band absorber for sensing applications. Opt Express 24:9288–9294

    Article  CAS  Google Scholar 

  18. Wang BX, Zhai X, Wang GZ, Huang WQ, Wang LL (2015) Frequency tunable metamaterial absorber at deep-subwavelength scale. Opt Mater Express 5:227–235

    Article  Google Scholar 

  19. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120

    CAS  Google Scholar 

  20. Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photon Rev 8:495–520

    Article  CAS  Google Scholar 

  21. Radi Y, Simovski CR, Tretyakov SA (2015) Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3:037001

    Article  Google Scholar 

  22. Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD (2010) A dual band terahertz metamaterial absorber. J Phys D 43:225102

    Article  Google Scholar 

  23. Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui TJ (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101:154102

    Article  Google Scholar 

  24. Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407

    Article  CAS  Google Scholar 

  25. Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DRS (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36:945–947

    Article  Google Scholar 

  26. Bhattacharyya S, Ghosh S, Srivastava KV (2013) Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J Appl Phys 114:094514

    Article  Google Scholar 

  27. Wang GD, Liu MH, Hu XW, Kong LH, Cheng LL, Chen ZQ (2014) Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses. Chin Phys B 23:017802

    Article  Google Scholar 

  28. Liu S, Zhuge J, Ma S, Chen H, Bao D, He Q, Zhou L, Cui TJ (2015) A bi-layered quad-band metamaterial absorber at terahertz frequencies. J Appl Phys 118:245304

    Article  Google Scholar 

  29. Kajtar G, Kafesaki M, Economou EN, Soukoulis CM (2016) Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum. J Phys D 49:055104

    Article  Google Scholar 

  30. Su Z, Yin J, Zhao X (2015) Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structure. Opt Express 23:1679–1690

    Article  CAS  Google Scholar 

  31. Hokmabadi MP, Wilbert DS, Kung P, Kim SM (2014) Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber. Phys. Rev. Appl. 1:044003

    Article  Google Scholar 

  32. Li S, Gao J, Cao X, Zhang Z, Zheng Y, Zhang C (2015) Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Opt Express 23:3523–3533

    Article  CAS  Google Scholar 

  33. Feng R, Qiu J, Liu L, Ding W, Chen L (2014) Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling. Opt Express 22:A1713–A1724

    Article  Google Scholar 

  34. Park JW, Tuong PV, Rhee JY, Kim KW, Jang WH, Choi EH, Chen LY, Lee YP (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21:9691–9702

    Article  Google Scholar 

  35. Viet DT, Hien NT, Tuong PV, Minh NQ, Trang PT, Le LN, Lee YP, Lam VD (2014) Perfect absorber metamaterials: peak, multi-peak and broadband absorption. Opt Commun 322:209–213

    Article  CAS  Google Scholar 

  36. Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. J. Opt. Soc. Am. B 30:656–662

    Article  Google Scholar 

  37. Arezoomand AS, Zarrabi FB, Heydari S, Gandji NP (2015) Independent polarization and multi-band THz absorber base on Jerusalem cross. Opt Commun 352:121–126

    Article  CAS  Google Scholar 

  38. Kollatou TM, Dimitriadis AI, Assimonis SD, Kantartzis NV, Antonopoulos CS (2013) Multi-band, highly absorbing, microwave metamaterial structures. Appl Phys A Mater Sci Process 115:555–561

    Article  Google Scholar 

  39. Wang BX, Wang GZ, Sang T (2016) Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J Phys D 49:165307

    Article  Google Scholar 

  40. Yao G, Ling F, Yue J, Luo C, Ji J, Yao J (2016) Dual-band tunable perfect metamaterial absorber in the THz range. Opt Express 24:1518–1527

    Article  CAS  Google Scholar 

  41. Wang BX (2017) Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quant Electron 23:4700107

    Google Scholar 

  42. Li H, Yuan LH, Zhou B, Shen XP, Cheng Q, Cui TJ (2011) Ultrathin multiband gigahertz metamaterial absorbers. J Appl Phys 110:014909

    Article  Google Scholar 

  43. Ye Q, Liu Y, Lin H, Li M, Yang H (2012) Multi-band metamaterial absorber made of multi-gap SRRs structure. Appl Phys A Mater Sci Process 107:155–160

    Article  CAS  Google Scholar 

  44. Wang BX, Wang GZ, Wang LL, Zhai X (2016) Design of a five-band terahertz absorber based on three nested split-ring resonators. IEEE Photon Technol Lett 28:307–310

    Article  CAS  Google Scholar 

  45. A. D. Khan, M. Amin 2016, Tunable salisbury screen absorber using square lattice of plasmonic nanodisk, Plasmonics, doi: 10.1007/s11468-016-0258-6.

  46. Bai Y, Zhao L, Ju D, Jiang Y, Liu L (2015) Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Opt Express 23:8670–8680

    Article  CAS  Google Scholar 

  47. Liu Y, Gu S, Luo C, Zhao X (2012) Ultra-thin broadband metamaterial absorber. Appl Phys A Mater Sci Process 108:19–24

    Article  CAS  Google Scholar 

  48. Ding F, Cui Y, Ge X, Jin Y, He S (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100:103506

    Article  Google Scholar 

  49. Cui Y, Xu J, Fung KH, Jin Y, Kumar A, He S, Fang NX (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99:253101

    Article  Google Scholar 

  50. Ye YQ, Jin Y, He S (2010) Ominidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J Opt Soc Am B 27:498–504

    Article  CAS  Google Scholar 

  51. Grant J, Ma Y, Saha S, Khalid A, Cumming DRS (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36:3476–3478

    Article  CAS  Google Scholar 

  52. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517

    Article  Google Scholar 

  53. Liu S, Chen H, Cui TJ (2015) A broadband terahertz absorber using multi-layer stacked bars. Appl Phys Lett 106:151601

    Article  Google Scholar 

  54. Han S, Shin JH, Jung PH, Lee H, Lee BJ (2016) Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Adv. Opt. Mater. doi:10.1002/adom.201600236

  55. Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photon Technol Lett 26:111–114

    Article  Google Scholar 

  56. Isic G, Vasic B, Zografopoulos DC, Beccherelli R, Gajic R (2015) Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals. Phys Rev Appl 3:064007

    Article  Google Scholar 

  57. Wang BX, Wang LL, Wang GZ, Huang WQ, Li XF, Zhai X (2014) Frequency continuous tunable terahertz metamaterial absorber. J Lightw Techno 32:1183–1189

    Article  Google Scholar 

  58. Zhang F, Feng S, Qiu K, Liu Z, Fan Y, Zhang W, Zhao Q, Zhou J (2015) Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett 106:091907

    Article  Google Scholar 

  59. Wang GZ, Wang BX (2015) Five-band terahertz metamaterial absorber based on a four-gap comb resonator. J Lightw Technol 33:5151–5156

    Article  Google Scholar 

  60. Li Q, Wang J, He Y (2016) Selective chemiluminescent sensor for detection of mercury (II) ions using non-aggregated luminol-capped gold nanoparticles. Sensors Actuat. B: Chem. 231:64–69

    Article  CAS  Google Scholar 

  61. He Y, Zhang X (2016) Ultrasensitive colorimetric detection of manganese (II) ions based on anti-aggregation of unmodified silver nanoparticles. Sensors Actuat B: Chem 222:320–324

    Article  CAS  Google Scholar 

  62. Liang Y, He Y (2016) Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183:407–413

    Article  CAS  Google Scholar 

  63. He Y, Liang Y, Song H (2016) One-pot preparation of creatinine-functionalized gold nanoparticles for colorimetric detection of silver ions. Plasmonics 11:587–591

    Article  CAS  Google Scholar 

  64. He Y, Liang Y, Wang D (2015) The highly sensitive and facile colorimetric detection of the glycidyl azide polymer based on propargylamine functionalized gold nanoparticles using click chemistry. Chem Commun 51:12092–12094

    Article  CAS  Google Scholar 

  65. He Y, Yu H (2015) A novel triangular silver nanoprisms-based surface plasmon resonance assay for free chlorine. Analyst 140:902–906

    Article  CAS  Google Scholar 

  66. He Y, Peng R (2014) Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline. Nanotechnology 25:45502–45508

    Google Scholar 

  67. He Y, Xu B, Li W, Yu H (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63:2930–2934

    Article  CAS  Google Scholar 

  68. Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353

    Article  CAS  Google Scholar 

  69. Ohara JF, Singh R, Brener I, Smirnova E, Han J, Taylor AJ, Zhang W (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16:1786–1795

    Article  Google Scholar 

  70. Gu J, Singh R, Tian Z, Cao W, Xing Q, He M, Zhang JW, Han J, Chen HT, Zhang W (2010) Terahertz superconductor metamaterial. Appl Phys Lett 97:071102

    Article  Google Scholar 

  71. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11647143), the Natural Science Foundation of Jiangsu Province (Grant No. BK20160189) and the Fundamental Research Funds for the Central Universities (Grant No. JUSRP115A13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Xin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BX., Wang, GZ. New Type Design of the Triple-Band and Five-Band Metamaterial Absorbers at Terahertz Frequency. Plasmonics 13, 123–130 (2018). https://doi.org/10.1007/s11468-016-0491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0491-z

Keywords

Navigation