Skip to main content
Log in

Designing a High Performance Phase Gradient Metasurface Using Optical Patch Antennas with Different Patch Thicknesses

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Patch-based metasurfaces as generic structures of the reflective flat optical devices, such as flat mirrors, waveplates, polarizer, and holograms, should fulfill two basic requirements of covering 0 to 2π phase shift range and providing a sufficiently high reflection amplitude. Under the current design paradigm, the design process has been based only on the width and length of the patch elements of the metasurfaces. The present study will exploit the potentials of the thickness of the patch elements as a design parameter. While for a metasurface based on patch elements with thickness of 50 nm, a phase shift coverage near 270°, corresponding to 90° phase steps, and reflection amplitude of 0.8 in the wavelength 775 nm are achievable, using just one additional value of 30 nm for thicknesses of the patches will increase the phase shift coverage to 320°, corresponding to 40° phase steps, with reflection amplitude higher than 0.85 in the same wavelength. In this way, the phase steps could be much smaller which means more closely approximating a targeted phase pattern. This would be evidently a remarkable performance improvement, which in the case of a polarization beam splitter, as shown, means reflecting more amount of energy in the desired angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antenn Propag M 54(2):10–35

    Article  Google Scholar 

  2. Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335(6067):427–427

    Article  CAS  Google Scholar 

  3. Yu N, Genevet P, Aieta F, Kats MA, Blanchard R, Aoust G, Tetienne JP, Gaburro Z, Capasso F (2013) Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE J Sel Top Quant 19(3):4700423

    Article  Google Scholar 

  4. Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339(6125):1232009

    Article  Google Scholar 

  5. Yu N, Capasso F (2015) Optical metasurfaces and prospect of their applications including fiber optics. J Lightwave Technol 33(12):2344–2358

    Article  Google Scholar 

  6. Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  CAS  Google Scholar 

  7. Arbabi A, Faraon A (2014) Fundamental limits of ultrathin metasurfaces. arXiv preprint arXiv:1411.2537

  8. Pors A, Bozhevolnyi SI (2013) Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 21(22):27438

    Article  Google Scholar 

  9. Sun S, Yang KY, Wang CM, Juan TK, Chen WT, Liao CY, He Q, Xiao S, Kung WT, Guo GY, Zhou L (2012) High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12(12):6223–6229

    Article  CAS  Google Scholar 

  10. Pors A, Albrektsen O, Radko IP, Bozhevolnyi SI (2013) Gap plasmon-based metasurfaces for total control of reflected light. Scientific reports 3:013

    Article  Google Scholar 

  11. Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI (2013) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13(2):829–834

    Article  CAS  Google Scholar 

  12. Unal GS, Aksun MI (2015) Bridging the gap between RF and optical patch antenna analysis via the cavity model. Scientific reports 5

  13. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  14. Mühlenbernd H, Georgi P, Pholchai N, Huang L, Li G, Zhang S, Zentgraf T (2016) Amplitude-and phase-controlled surface plasmon polariton excitation with metasurfaces. ACS Photonics 3(1):124–129

    Article  Google Scholar 

  15. Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S (2014) Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26(29):5031–5036

    Article  CAS  Google Scholar 

  16. Nielsen MG, Gramotnev DK, Pors A, Albrektsen O, Bozhevolnyi SI (2011) Continuous layer gap plasmon resonators. Opt Express 19(20):19310–19322

    Article  CAS  Google Scholar 

  17. Zhao Y, Alù A (2013) Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano let 13(3):1086–1091

    Article  CAS  Google Scholar 

  18. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4360

    Article  Google Scholar 

  19. Ghatak A, Thyagarajan K, Shenoy M (1987) Numerical analysis of planar optical waveguides using matrix approach. J Lightwave Technol 5(5):660–667

    Article  Google Scholar 

  20. Nunes FD, Weiner J (2009) Equivalent circuits and nanoplasmonics. IEEE T Nanotechnol 8(3):298

    Article  Google Scholar 

  21. Kogelnik H (1988) Theory of optical waveguides in guided-wave optoelectronics. edited by T. Tamir

  22. García-Etxarri A (2011) Modelization of plasmonic nanoantennas for optical microscopy and surface enhanced spectroscopy. Dissertion, Universidad del Pais Vasco

  23. Bozhevolnyi SI (2007) General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 15(17):10869–10877

    Article  CAS  Google Scholar 

  24. Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L (2015) Tailor the functionalities of metasurfaces: From perfect absorption to phase modulation. arXiv preprint arXiv:1507.00929

  25. Wen D, Yue F, Kumar S, Ma Y, Chen M, Ren X, Kremer PE, Gerardot BD, Taghizadeh MR, Buller GS, Chen X (2015) Metasurface for characterization of the polarization state of light. Opt Express 23(8):10272–10281

    Article  CAS  Google Scholar 

  26. Larouche S, Smith DR (2012) Reconciliation of generalized refraction with diffraction theory. Opt Lett 37(12):2391–2393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hashem Vadjed Samiei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahdat-Ahar, A., Samiei, M.H.V. Designing a High Performance Phase Gradient Metasurface Using Optical Patch Antennas with Different Patch Thicknesses. Plasmonics 13, 71–80 (2018). https://doi.org/10.1007/s11468-016-0485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0485-x

Keywords

Navigation