Skip to main content
Log in

The Tunable and Well-Controlled Surface Plasmon Resonances of Au Hollow Nanostructures by a Chemical Route

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Au plasmonic hollow spherical nanostructures were synthesized by electrochemical reduction (GRR, the Galvanic Replacement Reaction) using Ag nanoparticles as templates. From UV-visible absorption spectroscopy, it was found that the surface plasmon resonance (SPR) of gold hollow spherical nanostructures first showed red shift and then blue shift. However, further addition of gold precursor (HAuCl4) resulted into a red shift of SPR peak. The morphological changes from Ag nanoparticles to Au hollow nanostructures were assessed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX)analysis. The Mie Scattering theory based simulations of SPR of Au hollow nanostructures were performed which are in good agreement with the experimental observations. Based on the experimental observations and theoretical calculations, a complete growth mechanism for Au hollow nanostructures is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  2. Chen XJ, Wen R, Zhang LS, Lahiri A, Wang PJ, Fang Y (2014) Photoreduction of silver salts using Au nanoparticles to form a core-shell-type nanostructure: insight into the reaction mechanism. Plasmonics 9:945–949

    Article  CAS  Google Scholar 

  3. Wang PJ, Liu MY, Gao GL, Zhang SP, Shi HL, Li ZP, Zhang LS, Fang Y (2012) From gold nanorods to nanodumbbells: a different way to tailor surface plasmon resonances by a chemical route. J Mate Chem 22:24006–24011

    Article  CAS  Google Scholar 

  4. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  5. Ratto F, Matteini P, Rossi F, Menabuoni L, Tiwari N, Kulkarni SK, Pini R (2009) Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomed-Nanotechnol 5:143–151

    Article  CAS  Google Scholar 

  6. Xia XH, Wang Y, Ruditskiy A, Xia YN (2013) 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv Mater 25:6313–6333

    Article  CAS  Google Scholar 

  7. Sun YG, Mayers B, Xia YN (2003) Metal nanostructures with hollow interiors. Adv Mater 15:641–646

    Article  CAS  Google Scholar 

  8. Sun Y, G Xia YN (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium.J Am Chem Soc 126:3892–3901.

  9. Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res51:293–298.

  10. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228

    Article  Google Scholar 

  11. Lu LH, Sun GY, Xi SQ, Wang HS, Zhang HJ, Wang T (2003) A colloidal templating method to hollow bimetallic nanostructures. Langmuir 19:3074–3077

    Article  CAS  Google Scholar 

  12. Lee W, Scholz R, Nielsch K, Gösele U (2005) A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. AngewChem 117:6204–6208

    Article  Google Scholar 

  13. Gao CB, Zhang Q, Lu ZD, Yin YD (2011) Templated synthesis of metal nanorods in silica nanotubes. J Am Chem Soc 133:19706–19709

    Article  CAS  Google Scholar 

  14. Fowler CE, Khushalani D, Mann S (2001) Interfacial synthesis of hollow microspheres of mesostructured silica. ChemCommun 19:2028–2029

    Google Scholar 

  15. Wang ZX, Chen XB, Chen M, Wu LM (2009) Facile fabrication method and characterization of hollow Ag/SiO2 double-shelled spheres. Langmuir 25:7646–7651

    Article  CAS  Google Scholar 

  16. Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature-sensitive hydrogels with SiO 2–Au nanoshells for controlled drug delivery. J Control Release 123:219–227

    Article  CAS  Google Scholar 

  17. Caruso F, Lichtenfeld H, Giersig M, Möhwald HM (1998) Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J Am Chem Soc 120:8523–8524

    Article  CAS  Google Scholar 

  18. Son Y, Son Y, Choi M, Ko M, Chae S, Park N, Cho J (2015) Hollow silicon nanostructures via the Kirkendall effect. Nano Lett 15:6914–6918

    Article  Google Scholar 

  19. Knez M, Nielsch K, Niinistö L (2007) Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv Mate 19:3425–3438

    Article  CAS  Google Scholar 

  20. Shin H, Jeong DK, Lee J, Sung MM, Kim J (2004) Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater 16:1197–1200

    Article  CAS  Google Scholar 

  21. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595

    Article  CAS  Google Scholar 

  22. Lu XM, Chen J, Skrabalak SE, Xia YN (2007) Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures. Pro Ins Mech Eng Part N 221:1–16

    Google Scholar 

  23. Cobley CM, Xia YN (2010) Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater Sci Eng 70:44–62

    Article  Google Scholar 

  24. Chen MH, Gao LA (2006) Synthesis and characterization of Ag nanoshells by a facile sacrificial template route through in situ replacement reaction. InorgChem 45:5145–5149

    CAS  Google Scholar 

  25. Skrabalak SE, Chen J, Sun YG, Lu XM, Au L, Cobley CM, Xia YN (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595

    Article  CAS  Google Scholar 

  26. Chen J, Wiley B, McLellan J, Xiong YJ, Li ZY, Xia YN (2005) Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett 5:2058–2062

    Article  CAS  Google Scholar 

  27. Xu HX (2005) Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field. Phys Rev B 72:073405

    Article  Google Scholar 

  28. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J PhyChem 86:3391–3395

    CAS  Google Scholar 

  29. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Review B 6:4370–4379

    Article  CAS  Google Scholar 

  30. Zhang LS, Zhao F, Li ZP, Fang Y, Wang PJ (2016) Tailoring of localized surface plasmon resonances core-shell Au@ Ag nanorods by changing the thickness of Ag shell. Plasmonics 1–7

  31. Sun YG, Xia YN (2003) Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett 3:1569–1572

    Article  CAS  Google Scholar 

  32. Dursun A, Pugh DV, Corcoran SG (2003) Dealloying of Ag-Au alloys in halide-containing electrolytes affect on critical potential and pore size. J Electro Chem Soc 15:B355–B360

    Article  Google Scholar 

  33. Lu XM, Au L, McLellan J, Li ZY, Marquez M, Xia YN (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe (NO3) 3 or NH4OH. Nano Lett 7:1764–1769

    Article  CAS  Google Scholar 

  34. Zeng HC (2007) Ostwald ripening: a synthetic approach for hollow nanomaterials. Cur Nanosci 3:177–181

    Article  CAS  Google Scholar 

  35. Noorduin WL, Vlieg E, Kellogg RM, Kaptein B (2009) From Ostwald ripening to single chirality. AngewChemInt Ed 48:9600–9606

    CAS  Google Scholar 

  36. Sadegh Y, Josée RD, Nicolas L, George CS, Denis B, Emilie R (2016) Reversible shape and plasmon tuning in hollow AgAu nanorods. Nano Lett 16:6939–6945

    Article  Google Scholar 

  37. Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang GH, Schüth F (2016) Hollow nano- and microstructures as catalysts. Chem Rev 116(22):14056–14119

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This project is supported by the National Natural Science Foundation of China (No. 21473115; No.11274004), the National Youth Foundation of China (grant no. 11204189), NCET (Grant No. NCET-13-0915), Fok Ying Tung Education Foundation (grant number 151010) and the Scientific Research Base Development Program of the Beijing Municipal Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Fang or Peijie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Yang, H., Li, Z. et al. The Tunable and Well-Controlled Surface Plasmon Resonances of Au Hollow Nanostructures by a Chemical Route. Plasmonics 13, 47–53 (2018). https://doi.org/10.1007/s11468-016-0482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0482-0

Keywords

Navigation