Skip to main content
Log in

Magneto-optical Studies of Noble Metal-Magnetic Dielectric Systems

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The extraordinary optical transmission and Faraday effects of the bilayer heterostructure consisting of a metallic film perforated with subwavelength hole arrays and a uniform dielectric film magnetized perpendicular to its plane were systematically studied by three-dimensional finite-difference time-domain method. Results of the calculation found that for the magneto-plasmonic crystals under polarized incident light with transverse magnetic mode, the resonant transmittance reached 36.9%, the Faraday rotation acquired 1.216°, and the ellipticity got a positive value of 0.840. The value of Faraday rotation and ellipticity is respectively 15.2 and 93.3 times enhancement of the 0.08° and −0.009 of the bare BIG film at the wavelength. In the transverse electric mode, the Faraday effects of the systems also had a large enhancement in contrast to the bare magnetic film. The magneto-optical effects of the systems could be manipulated by polarization mode of incident light, geometry of perforated subwavelength hole arrays, and thickness of metallic and magnetic films. Evolution of the magneto-optical properties on the structural parameters was also analyzed. Possible mechanisms underlying the extraordinary phenomena were profoundly discussed. All these results indicated that the systems could find potential applications in magneto-optical devices such as data storages, sensors, and telecommunications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu M, Zhang X (2013) Nano-optics, Plasmon-boosted magneto-optics. Nat photon 7:429–430

    Article  CAS  Google Scholar 

  2. Qiu ZQ, Bader SD (1999) Surface magneto-optic Kerr effect (SMOKE). J Magn Magn Mater 200:664–678

    Article  CAS  Google Scholar 

  3. Du Tremolet de Lacheisserie E, Gignoux D, Schlenker M (2005) Magnetism fundamentals. Springer

  4. Belotelov VI, Akimov IA, Pohl M, Kotov VA, Kasture S, Vengurlekar AS, Gopal AV, Yakovlev DR, Zvezdin AK, Bayer M (2011) Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat Nanotech 6:370–376

    Article  CAS  Google Scholar 

  5. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  6. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nat 391:667–669

    Article  CAS  Google Scholar 

  7. Strelniker YM, Bergman DJ (1999) Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field. Phys Rev B 59:R12763–R12766

    Article  CAS  Google Scholar 

  8. Chin JY, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov VI, Stritzker B, Giessen H (2013) Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat Commun 4:1599–11-6

    Article  Google Scholar 

  9. Belotelov VI, Doskolovich LL, Zvezdin AK (2007) Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Phys Rev Lett 98:077401–0771-4

    Article  CAS  Google Scholar 

  10. Belotelov VI, Kreilkamp LE, Akimov IA, Kalish AN, Bykov DA, Kasture S, Yallapragada VJ, Gopal AV, Grishin AM, Khartsev SI, Nur-E-Alam M, Vasiliev M, Doskolovich LL, Yakovlev DR, Alameh K, Zvezdin AK, Bayer M (2013) Plasmon-mediated magneto-optical transparency. Nat Commun 4:2128–21-7

    Article  CAS  Google Scholar 

  11. Banthí JC, Meneses-Rodríguez D, García F, González MU, García-Martín A, Cebollada A, Armelles G (2012) High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au–SiO2 magnetoplasmonic nanodisks. Adv Mater 24:OP36–OP41

    Google Scholar 

  12. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Book  Google Scholar 

  13. Ctistis G, Papaioannou E, Patoka P, Gutek J, Fumagalli P, Giersig M (2009) Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Nano Lett 9:1–6

    Article  CAS  Google Scholar 

  14. Stoyan Tanev, Dazeng Feng, Steven Dods, Velko Tzolov, Z.J. Jakubczyk, Chengkun Chen, Pierre Berini, Christoph Wächter, H.F. Pinheiro, A.P.L. Barbero and H.E. Hernández-Figueroa (2001) Advances in the development of simulation tools for integrated optics devices: FDTD, BPM and mode solving techniques, Proceedings of SPIE 4277 1–20

  15. Caballero B, Garcia-Martin A, Cuevas JC (2015) Faraday effect in hybrid magneto-plasmonic photonic crystals. Opt Express 12:22238–22249

    Article  Google Scholar 

  16. Krishnan A, Thio T, Kim T, Lezec H, Ebbesen T, Wolff P, Pendry J, Martìn-Moreno L, Garcia Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200:1–7

    Article  CAS  Google Scholar 

  17. Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401–0371-4

    Article  CAS  Google Scholar 

  18. Hu Y, Liu G-q, Liu Z-q, Liu X-s, Zhang X-n, Cai Z-j, Liu M-l, Gao H-g, Gu G (2015) Extraordinary optical transmission in metallic nanostructures with a plasmonic nanohole array of two connected slot antennas. Plasmonics 10:483–488

    Article  CAS  Google Scholar 

  19. Diwekar M, Kamaev V, Shi J, Vardeny ZV (2004) Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films. Appl Phys Lett 84:3112–3114

    Article  CAS  Google Scholar 

  20. Braun J, Gompf B, Weiss T, Giessen H, Dressel M, Hubner U (2011) Optical transmission through subwavelength hole arrays in ultrathin metal films. Phys Rev B 84:155419–1551-6

    Article  Google Scholar 

  21. Maccaferri N, Kataja M, Bonanni V, Bonetti S, Pirzadeh Z, Dmitriev A, van Dijken S, Åkerman J, Vavassori P (2014) Effects of a non-absorbing substrate on the magneto-optical Kerr response of plasmonic ferromagnetic nanodisks. Phys Status Solidi A 211:1067–1075

    Article  CAS  Google Scholar 

  22. Bethanie JH, Stadler, Mizumoto T (2014) Integrated magneto-optical materials and isolators: a review. IEEE Photonics Journal 6:0600215–0601-15

    Google Scholar 

  23. Avazpour L, Toroghinejad MR, Shokrollahi H (2016) Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol–gel method. Appl Surf Sci 387:869–874

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2016YFB0400801), 863 program (2014AA032608); National Natural Science Foundation of China (U1405253, 61227009, 61205051, 90921002); Natural Science Foundation of Fujian Province of China (2016J01265, 2013J05097); Fundamental Research Funds for the Central Universities (20720160015, 20720150032); Fundamental Research Funds for Xiamen University (2016Y0589, 2016Y0591); and Open Project Program of Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University (WYKF2016-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Chen, H., Liu, Q. et al. Magneto-optical Studies of Noble Metal-Magnetic Dielectric Systems. Plasmonics 13, 31–38 (2018). https://doi.org/10.1007/s11468-016-0480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0480-2

Keywords

Navigation