Skip to main content
Log in

Geometry-Dependent Surface Plasmonic Properties and Dielectric Sensitivity of Bimetallic Au@Pd Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Bimetallic nanoparticles have attracted increasing interest because of their unique optical, electronic, magnetic, and catalytic properties which are different from that of their individual constituent metals. In this paper, we report a facile route to the synthesis of Pd-covered and Pd-tipped gold nanorods (AuNRs). And finite-different time-domain (FDTD) is also applied to simulate the longitudinal surface plasmon resonance (SPRL) characteristics for two different layered growth modes. The simulated absorption spectra agree with the experimental results. For the Pd-covered AuNRs, it is found that the SPRL shows a red-shift with shell thickness less than 2 nm. And then, the SPRL blue-shifts and gradually approaches to the absorption peak of Pd nanocuboids with increasing Pd shell thickness. While the SPRL of Pd-tipped AuNRs red-shifts with increasing Pd tip-particle size, it is revealed that the bimetallic Au@Pd NRs have higher refractive index sensitivities than that of AuNR cores. The tunable SPRL and higher refractive index sensitivities of bimetallic Au@Pd NRs may lead to great potential applications in many Pd-catalyzed reactions and provide an important reference of Pd nanostructures for SPR-based sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xia YS (2016) Optical sensing and biosensing based on non-spherical noble metal nanoparticles. Anal Bioanal Chem 408(11):2813–2825

    Article  CAS  Google Scholar 

  2. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  3. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44(10):936–946

    Article  CAS  Google Scholar 

  4. Ding H, Yong KT, Roy I, Pudavar HE, Law WC, Bergey EJ, Prasad PN (2007) Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J Phys Chem C 111(34):12552–12557

    Article  CAS  Google Scholar 

  5. Wu Y, Wang D, Li Y (2013) Nanocrystals from solutions: catalysts. Chem Soc Rev 43(7):2112–2124

    Article  Google Scholar 

  6. Jiang R, Li B, Fang C, Wang J (2014) Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater 26(31):5274–5309

    Article  CAS  Google Scholar 

  7. Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459(7245):410–413

    Article  CAS  Google Scholar 

  8. Zhou BP, Ouyang YJ (2010) Electrodeposition of Pd-Ag alloy nanoparticle chains on carbon fibers and their hydrogen sensing properties. Acta Phys -Chim Sin 26(1):237–243

    CAS  Google Scholar 

  9. Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1903

    Article  CAS  Google Scholar 

  10. Gutiérrez-Sánchez C, Pita M, Vaz-Domínguez C, Shleev S, De Lacey AL (2012) Gold nanoparticles as electronic bridges for laccase-based biocathodes. J Am Chem Soc 134(41):17212–17220

    Article  Google Scholar 

  11. Haynes CL, Duyne RPV (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107(30):7426–7433

    Article  CAS  Google Scholar 

  12. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37(5):898–911

    Article  CAS  Google Scholar 

  13. Li H, Kan C, Yi Z, Ding X, Cao Y, Zhu J (2010) Synthesis of one dimensional gold nanostructures. J Nanomater 2010(12):139–143

    Google Scholar 

  14. KE SL, Kan CX, Mo B, Cong B, Zhu JZ (2012) Research progress on the optical properties of gold nanorods. Acta Phys -Chim Sin 28(6):1275–1290

    CAS  Google Scholar 

  15. Hobbs RG, Yang YJ, Fallahi A, Keathley PD, De Leo E, Graves WS, Berggren KK (2014) High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays. ACS Nano 8(11):11474–11482

    Article  CAS  Google Scholar 

  16. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  Google Scholar 

  17. Huang H, Qu C, Liu X, Huang S, Xu Z, Zhu Y, Chu PK (2011) Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem Commun 47(24):6897–6899

    Article  CAS  Google Scholar 

  18. Matthews JR, Payne CM, Hafner JH (2015) Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced Raman scattering. Langmuir 31(36):9893–9900

    Article  CAS  Google Scholar 

  19. Zhang L, Roling LT, Wang X, Vara M, Chi M, Liu J, Choi SI, Park J, Herron JA, Xie Z (2015) Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349(6246):412–416

    Article  CAS  Google Scholar 

  20. Zhu X, Zhuo X, Li Q, Yang Z, Wang J (2016) Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability. Adv Funct Mater 26(3):159–168

    Google Scholar 

  21. Zhuo X, Zhu X, Li Q, Yang Z, Wang J (2015) Gold Nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances. ACS Nano 9(7):7523–7535

    Article  CAS  Google Scholar 

  22. Bai T, Sun J, Che R, Xu L, Yin C, Guo Z, Gu N (2014) Controllable preparation of core-shell Au-Ag nanoshuttles with improved refractive index sensitivity and SERS activity. ACS Appl Mater Interfaces 6(5):3331–3340

    Article  CAS  Google Scholar 

  23. Wang X, Vara MI, Luo M, Huang H, Ruditskiy A, Park J, Bao SX, Liu JJ, Howe JY, Chi M (2015) Pd@Pt Core-shell concave decahedra: a class of catalysts for the oxygen reduction reaction with enhanced activity and durability. J Am Chem Soc 137(47):15036–11542

    Article  CAS  Google Scholar 

  24. Wang A, Peng Q, Li Y (2011) Rod-shaped Au–Pd core–shell nanostructures. Chem Mat 23(13):3217–3222

    Article  CAS  Google Scholar 

  25. Wang Z, Chen Z, Zhang H, Zhang Z, Wu H, Jin M, Wu C, Yang D, Yin Y (2015) Lattice mismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 9(3):3307–3313

    Article  CAS  Google Scholar 

  26. Xiong Y, Cai H, Wiley BJ, Wang J, Kim MJ, Xia Y (2007) Synthesis and mechanistic study of palladium nanobars and nanorods. J Am Chem Soc 129(12):3665–3675

    Article  CAS  Google Scholar 

  27. Zhang K, Xiang Y, Wu X, Feng L, He W, Liu J, Zhou W, Xie S (2009) Enhanced optical responses of Au@Pd core/shell nanobars. Langmuir 25(2):1162–1168

    Article  CAS  Google Scholar 

  28. Zheng Z, Tachikawa T, Majima T (2015) Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. J Am Chem Soc 137(2):948–957

    Article  CAS  Google Scholar 

  29. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mat 15(10):1957–1962

    Article  CAS  Google Scholar 

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  31. Fan FR, Liu DY, Wu YF, Duan S, Xie ZX, Jiang ZY, Tian ZQ (2008) Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130(22):6949–6951

    Article  CAS  Google Scholar 

  32. Song JF, Kim F, Kim D, Yang P (2005) Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods. Chem Eur J 11(3):910–916

    Article  CAS  Google Scholar 

  33. Wang L, Zhu Y, Xu L, Wei C, Kuang H, Liu L, Agarwal A, Xu C, Kotov NA (2010) Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem-Int Edit 49(32):5472–5475

    Article  CAS  Google Scholar 

  34. Liu JS, Kan CX, Li YL, Xu HY, Ni Y, Shi DN (2014) End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol). Appl Phys Lett 104(25):253105

    Article  Google Scholar 

  35. Chen H, Shao L, Li Q, Wang J (2013) Gold nanorods and their plasmonic properties. Chem Soc Rev 42(7):2679–2724

    Article  CAS  Google Scholar 

  36. Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88(7):077402

    Article  CAS  Google Scholar 

  37. Xu XB, Luo JS, Liu M, Wang YY, Yi Z, Li XB, Yi YG, Tang YJ (2015) Cavity-induced NIR tunability in optical response and energy confinement of dumbbell-shaped Au nanorod. Plasmonics 10(2):369–381

    Article  CAS  Google Scholar 

  38. Grzelczak M, Pérez-Juste J, de GarcíaAbajo FJ, Liz-Marzán LM (2007) Optical properties of platinum-coated gold nanorods. J Phys Chem C 111(17):6183–6188

    Article  CAS  Google Scholar 

  39. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Fundamental Research Funds for the Central Universities (NZ2015101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caixia Kan or Daning Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Kan, C., Ke, S. et al. Geometry-Dependent Surface Plasmonic Properties and Dielectric Sensitivity of Bimetallic Au@Pd Nanorods. Plasmonics 12, 1183–1191 (2017). https://doi.org/10.1007/s11468-016-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0374-3

Keywords

Navigation