Skip to main content
Log in

Electromagnetically Induced Transparency and Refractive Index Sensing for a Plasmonic Waveguide with a Stub Coupled Ring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A plasmonic refractive index sensor based on electromagnetically induced transparency (EIT) composed of a metal-insulator-metal (MIM) waveguide with stub resonators and a ring resonator is presented. The transmission properties and the refractive index sensitivity are numerically studied with the finite element method (FEM). The results revealed an EIT-like transmission spectrum with an asymmetric line profile and a refractive index sensitivity of 1057 nm/RIU are obtained. The coupled mode theory (CMT) based on transmission line theory is adopted to illustrate the EIT-like phenomenon. Multiple EIT-like peaks are observed in the transmission spectrum of the derived structures based on the MIM waveguide with stub resonator coupled ring resonator. To analyze the multiple EIT-like modes of the derived structures, the H z field distribution is calculated. In addition, the effect of the structural parameters on the EIT-like effect is also studied. These results provide a new method for the dynamic control of light in the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  2. Han Z, Bozhevolnyi SI (2012) Radiation guiding with surface plasmon polaritons. Rep Prog Phys 76(1):016402

    Article  Google Scholar 

  3. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3):131–314

    Article  CAS  Google Scholar 

  4. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7):20–27

    Article  CAS  Google Scholar 

  5. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):e294

    Article  CAS  Google Scholar 

  6. Zhu JH, Wang QJ, Shum P, Huang XG (2010) A simple nanometeric plasmonic narrow-band filter structure based on metal–insulator–metal waveguide. IEEE T Nanotechnol 10(6):1371–1376

    Article  Google Scholar 

  7. Lu H, Liu X, Wang L, Gong YK, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19(4):2910–2915

    Article  CAS  Google Scholar 

  8. Piao X, Yu S, Park N (2012) Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20(17):18994–18999

    Article  Google Scholar 

  9. Ye J, Van Dorpe P (2011) Improvement of figure of merit for gold nanobar array plasmonic sensors. Plasmonics 6(4):665–671

    Article  CAS  Google Scholar 

  10. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502

    Article  Google Scholar 

  11. Chen J, Li Z, Li J, Gong QH (2011) Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt Express 19(10):9976–9985

    Article  CAS  Google Scholar 

  12. Chen Z, Wang W, Cui L, Yu L, Duan G, Zhao Y, Xiao J (2014) Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 10(3):721–727

    Article  Google Scholar 

  13. Wen K, Hu Y, Chen L, Zhou J, Lei L, Meng Z (2016) Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide. Plasmonics 11(1):315–321

    Article  CAS  Google Scholar 

  14. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782

    Article  Google Scholar 

  15. Zhan S, Li H, Cao G, He Z, Li B, Xu H (2014) Theoretical analysis of plasmon-induced transparency in ring-resonators coupled channel drop filter systems. Plasmonics 9(6):1431–1437

    Article  CAS  Google Scholar 

  16. Zhang ZD, Wang HY, Zhang ZY (2012) Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide. Plasmonics 8(2):797–801

    Article  Google Scholar 

  17. Peng B, Özdemir SK, Chen W, Nori F, Yang L (2014) What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat Commun 5:5082–5092

    Article  CAS  Google Scholar 

  18. He LY, Wang TJ, Gao YP, Cao C, Wang C (2015) Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system. Opt Express 23(18):23817–23826

    Article  CAS  Google Scholar 

  19. Hu M, Wang F, Liang R, Zhou S, Xiao L (2015) Plasmonic-induced transparency based on plasmonic asymmetric dual side-coupled cavities. Phys Lett A 379(6):581–584

    Article  CAS  Google Scholar 

  20. Ni B, Chen XY, Xiong DY, Liu H, Hua GH, Chang JH, Zhang JH, Zhou H (2015) Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt Quant Electron 47(6):1339–1346

    Article  CAS  Google Scholar 

  21. Zafar R, Salim M (2014) Wideband slow light achievement in MIM plasmonic waveguide by controlling Fano resonance. Infrared Phys Technol 67(67):25–29

    Article  CAS  Google Scholar 

  22. Chen J, Wang C, Zhang R, Xiao J (2012) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37(24):5133–5135

    Article  Google Scholar 

  23. Haus HA (1983) Waves and fields in optoelectronics. Prentice-Hall, New Jersey

    Google Scholar 

  24. Haus HA, Huang WP (1991) Coupled-mode theory. Proc IEEE 79(10):1505–1518

    Article  Google Scholar 

  25. Lai G, Liang R, Zhang Y, Bian Z, Yi L, Zhan G, Zhao R (2015) Double plasmonic nanodisks design for electromagnetically induced transparency and slow light. Opt Express 23(5):6554–6561

    Article  CAS  Google Scholar 

  26. Kekatpure RD, Hryciw AC, Barnard ES, Brongersma ML (2009) Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt Express 17(26):24112–24129

    Article  Google Scholar 

  27. Gai H, Wang J, Tian Q (2007) Modified Debye model parameters of metals applicable for broadband calculations. Appl Opt 46(12):2229–2233

    Article  CAS  Google Scholar 

  28. Kekatpure RD, Barnard ES, Cai W (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104(24):243902

    Article  Google Scholar 

  29. Zhang ZY, Wang JD, Zhao YN, Lu D, Xiong ZH (2011) Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide. Plasmonics 6:773–778

    Article  Google Scholar 

  30. Xu Q, Sandhu S, Povinelli ML, Shakya J, Fan S, Lipson M (2006) Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett 96(12):123901

    Article  Google Scholar 

  31. Huang Y, Ma LW, Hou MJ, Zhang ZJ (2016) Universal near-field interference patterns of Fano resonances in two-dimensional plasmonic crystals. Plasmonics. doi:10.1007/s11468-016-0187-4

    Google Scholar 

  32. Francescato Y, Giannini V, Maier SA (2012) Plasmonic systems unveiled by Fano resonances. ACS Nano 6(2):1830–1838

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61275166 and 61575117), the National Science Fund for Distinguished Young Scholars (Grant No. 51225504 and 61525107 ), the Natural Science Research Foundation of North University of China (Grant No 110246), Open Foundation of Science and Technology on Electronic Test and Measurement Laboratory of North University of China (Grant No. ZDSYSJ2015003), Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi, and the North University of China Science Fund for Distinguished Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z.D., Wang, R.B., Zhang, Z.Y. et al. Electromagnetically Induced Transparency and Refractive Index Sensing for a Plasmonic Waveguide with a Stub Coupled Ring Resonator. Plasmonics 12, 1007–1013 (2017). https://doi.org/10.1007/s11468-016-0352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0352-9

Keywords

Navigation