Skip to main content
Log in

A High Performance Plasmonic Sensor Based on Metal-Insulator-Metal Waveguide Coupled with a Double-Cavity Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A high performance plasmonic sensor based on a metal-insulator-metal (MIM) waveguide coupled with a double-cavity structure consisting of a side-coupled rectangular cavity and a disk cavity is proposed. The transmission characteristics of the rectangular cavity and disk cavity are analyzed theoretically and the improvements of performance for the double-cavity structure compared with a single cavity are studied. The influence of structural parameters on the transmission spectra and sensing performance are investigated in detail. A sensitivity of 1136 nm/RIU with a high figure of merit of 51,275 can be achieved at the resonant wavelength of 1148.5 nm. Due to the high performance and easy fabrication, the proposed structure may be applied in integrated optical circuits and on-chip nanosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  2. Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70(1):1

    Article  CAS  Google Scholar 

  3. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927

    Article  CAS  Google Scholar 

  4. Zhan G, Liang R, Liang H, Luo J, Zhao R (2014) Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities. Opt Express 22(8):9912–9919

    Article  CAS  Google Scholar 

  5. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22(7):7669–7677

    Article  CAS  Google Scholar 

  6. Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9(6):1265–1270

    Article  CAS  Google Scholar 

  7. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6(4):753–759

    Article  Google Scholar 

  8. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90(18):181102

    Article  Google Scholar 

  9. Min C, Veronis G (2009) Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt Express 17(13):10757–10766

    Article  CAS  Google Scholar 

  10. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104(23):231114

    Article  Google Scholar 

  11. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502

    Article  Google Scholar 

  12. Chen L, Xu J, Gao C, Zang X, Cai B, Zhu Y (2013) Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities. Appl Phys Lett 103(25):251105

    Article  Google Scholar 

  13. Chen L, Gao C, Xu J, Zang X, Cai B, Zhu Y (2013) Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems. Opt Lett 38(9):1379–1381

    Article  Google Scholar 

  14. Neutens P, Lagae L, Borghs G, Van Dorpe P (2012) Plasmon filters and resonators in metal-insulator-metal waveguides. Opt Express 20(4):3408–3423

    Article  CAS  Google Scholar 

  15. Shi S, Wei Z, Lu Z, Zhang X, Li X, Liu H, Liang R (2015) Enhanced plasmonic band-pass filter with symmetric dual side-coupled nanodisk resonators. J Appl Phys 118(14):143103

    Article  Google Scholar 

  16. Lu H, Liu X, Wang L, Gong Y, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19(4):2910–2915

    Article  CAS  Google Scholar 

  17. Wang G, Lu H, Liu X, Gong Y (2012) Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44):444009

    Article  Google Scholar 

  18. Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19(4):3513–3518

    Article  CAS  Google Scholar 

  19. Lu H, Liu X, Gong Y, Mao D, Wang G (2011) Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. JOSA B 28(7):1616–1621

    Article  CAS  Google Scholar 

  20. Wen K, Hu Y, Chen L, Zhou J, Lei L, Guo Z (2014) Design of an optical power and wavelength splitter based on subwavelength waveguides. J Lightwave Technol 32(17):3020–3026

    Article  Google Scholar 

  21. Chen C, Liao K (2013) 1×N plasmonic power splitters based on metal-insulator-metal waveguides. Opt Express 21(4):4036–4043

    Article  Google Scholar 

  22. Roh S, Chung T, Lee B (2011) Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. Sensors-Basel 11(2):1565–1588

    Article  Google Scholar 

  23. Chen Y, Ming H (2012) Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors 2(1):37–49

    Article  Google Scholar 

  24. Zou S, Wang F, Liang R, Xiao L, Hu M (2015) A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review. Sensors J IEEE 15(2):646–650

    Article  CAS  Google Scholar 

  25. Dolatabady A, Granpayeh N, Nezhad VF (2013) A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator. Opt Commun 300:265–268

    Article  CAS  Google Scholar 

  26. Xie Y, Huang Y, Zhao W, Xu W, He C (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. Photonics J IEEE 7(2):1–12

    Article  Google Scholar 

  27. Wu T, Liu Y, Yu Z, Peng Y, Shu C, He H (2014) The sensing characteristics of plasmonic waveguide with a single defect. Opt Commun 323:44–48

    Article  CAS  Google Scholar 

  28. Han Z, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19(4):3251–3257

    Article  CAS  Google Scholar 

  29. Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt Express 16(1):413–425

    Article  Google Scholar 

  30. Zhang Q, Huang X, Lin X, Tao J, Jin X (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17(9):7549–7555

    Article  CAS  Google Scholar 

  31. Chremmos I (2009) Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal. JOSA A 26(12):2623–2633

    Article  Google Scholar 

  32. Lu H, Liu X, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):53803

    Article  Google Scholar 

  33. Chen L, Wei Y, Zang X, Zhu Y, Zhuang S (2016) Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep-Uk 6:22027

    Article  CAS  Google Scholar 

  34. Sherry LJ, Chang S, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038

    Article  CAS  Google Scholar 

  35. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Projects of Key Scientific Instruments No. 2012YQ16000702 in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duluo Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Li, B., Xiong, D. et al. A High Performance Plasmonic Sensor Based on Metal-Insulator-Metal Waveguide Coupled with a Double-Cavity Structure. Plasmonics 12, 223–227 (2017). https://doi.org/10.1007/s11468-016-0253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0253-y

Keywords

Navigation