Skip to main content
Log in

Features of Local Electric Field Excitation in Asymmetric Nanocross Illuminated by Ultrafast Laser Pulse

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Features of the asymmetric nanocross including extinction spectrum, local electric field intensity, and temporal response of the local electric field under ultrashort laser illumination are investigated in this paper. It is found that, due to the simultaneous excitation of local electric fields in the arms that are perpendicular and parallel to the laser polarization direction of the asymmetric nanocross, extinction spectrum exhibits multiple resonant peaks and the position of the peaks can be tuned by changing the lengths of the arms. Simulation results disclose that there is a strong connection between optical response of the parallel and perpendicular arms. Moreover, temporal response of electric field in arms of the asymmetric nanocross shows that oscillations in the parallel arms start earlier than that of the perpendicular arms, and they are in phase when one of the parallel arms resonantly excited, which further reflects the relationship between the parallel and perpendicular arms. Therefore, we demonstrate that the perpendicular arm excitation is attributed to that of the nonresonant parallel arm in the asymmetric structure which cannot keep the overall electric neutrality of the nanostructure, and thus, perpendicular arms are activated to maintain this balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Atwater HA (2007) The promise of plasmonics. Sci Am 296:56–62

    Article  CAS  Google Scholar 

  4. Rodríguez-Fortuño FJ, Martínez-Marco M, Tomás-Navarro B, Ortuño R, Martí J, Martínez A, Rodríguez-Cantó PJ (2011) Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Appl Phys Lett 98:133118

    Article  Google Scholar 

  5. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3:654–657

    Article  CAS  Google Scholar 

  6. Esenturk EN, Walker ARH (2013) Gold nanostar@ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J Nanopart Res 15:1–10

    Article  Google Scholar 

  7. Osinkina L, Lohmuller T, Jackel F, Feldmann J (2013) Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy. J Phys Chem C 117:22198–22202

    Article  CAS  Google Scholar 

  8. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  Google Scholar 

  9. Ye L, Yong KT, Liu L, Roy I, Hu R, Zhu J et al (2012) A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nanotechnol 7:453–458

    Article  CAS  Google Scholar 

  10. Melchior P, Bayer D, Schneider C, Fischer A, Rohmer M, Pfeiffer W, Aeschlimann M (2011) Optical near-field interference in the excitation of a bowtie nanoantenna. Phys Rev B 83:235407

    Article  Google Scholar 

  11. Hrelescu C, Sau TK, Rogach AL, Jäckel F, Laurent G, Douillard L, Charra F (2011) Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. Nano Lett 11:402–407

    Article  CAS  Google Scholar 

  12. Yang YY, Csapó E, Zhang YL, Süßmann F, Stebbings SL, Duan XM, Kling MF et al (2012) Optimization of the field enhancement and spectral bandwidth of single and coupled bimetal core-shell nanoparticles for few-cycle laser applications. Plasmonics 7:99–106

    Article  CAS  Google Scholar 

  13. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  14. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AA (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  CAS  Google Scholar 

  15. Krenn JR, Schider G, Rechberger W, Lamprecht B, Leitner A, Aussenegg FR, Weeber JC (2000) Design of multipolar plasmon excitations in silver nanoparticles. Appl Phys Lett 77:3379–3381

    Article  CAS  Google Scholar 

  16. Mühlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609

    Article  Google Scholar 

  17. Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760

    Article  CAS  Google Scholar 

  18. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  19. Hrelescu C, Sau TK, Rogach AL, Jäckel F, Feldmann J (2009) Single gold nanostars enhance Raman scattering. Appl Phys Lett 94:153113

    Article  Google Scholar 

  20. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7:729–732

    Article  CAS  Google Scholar 

  21. Onishi S, Matsuishi K, Oi J, Harada T, Kusaba M, Hirosawa K, Kannari F (2013) Spatiotemporal control of femtosecond plasmon using plasmon response functions measured by near-field scanning optical microscopy (NSOM). Opt Express 21:26631–26641

    Article  Google Scholar 

  22. Pors A, Bozhevolnyi SI (2013) Plasmonic metasurfaces for efficient phase control in reflection. Opt Express 21:27438–27451

    Article  Google Scholar 

  23. Grant J, Ma Y, Saha S, Khalid A, Cumming DR (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36:3476–3478

    Article  CAS  Google Scholar 

  24. Chen S, Wang ZL, Ballato J, Foulger SH, Carroll DL (2003) Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc 125:16186–16187

    Article  CAS  Google Scholar 

  25. Verellen N, Van Dorpe P, Vercruysse D, Vandenbosch GA, Moshchalkov VV (2011) Dark and bright localized surface plasmons in nanocrosses. Opt Express 19:11034–11051

    Article  CAS  Google Scholar 

  26. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  CAS  Google Scholar 

  27. Pala RA, Liu JS, Barnard ES, Askarov D, Garnett EC, Fan S, Brongersma ML (2013) Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nat Commun 4:2095

    Article  Google Scholar 

  28. Xu Y, Munday JN (2014) Light trapping in a polymer solar cell by tailored quantum dot emission. Opt Express 22:A259–A267

    Article  Google Scholar 

  29. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  30. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  31. Chen K, Adato R, Altug H (2012) Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6:7998–8006

    Article  CAS  Google Scholar 

  32. Adato R, Yanik AA, Altug H (2011) On chip plasmonic monopole nano-antennas and circuits. Nano Lett 11:5219–5226

    Article  CAS  Google Scholar 

  33. FDTD solutions. http://www.lumerical.com

  34. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  35. Agio M, Alu A (2013) Optical antennas. Cambridge University Press, Cambridge

    Google Scholar 

  36. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  37. Crozier KB, Sundaramurthy A, Kino GS, Quate CF (2003) Optical antennas: resonators for local field enhancement. J Appl Phys 94:4632–4642

    Article  CAS  Google Scholar 

  38. Huang JS, Voronine DV, Tuchscherer P, Brixner T, Hecht B (2009) Deterministic spatiotemporal control of optical fields in nanoantennas and plasmonic circuits. Phys Rev B 79:195441

    Article  Google Scholar 

  39. Kubo A, Onda K, Petek H, Sun Z, Jung YS, Kim HK (2005) Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett 5:1123–1127

    Article  CAS  Google Scholar 

  40. Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by 973 program (2013CB922404); National Natural Science Foundation of China under Grant Nos. 11474040 11274053, 11474039, and 61178022; and also project 14KP007. The authors acknowledge the helpful discussion with Prof. Walter Pfeiffer at the University of Bielefeld and Prof. Zhiyuan Li at the Institute of Physics, CAS.

Funding

This study was funded by 973 program (2013CB922404); National Natural Science Foundation of China under Grant Nos. 11474040 11274053, 11474039, and 61178022; and also project 14KP007.

Conflict of Interest

The authors declare that they have no conflict of interest.

Helpful Discussion

The authors acknowledge the helpful discussion with Prof. Walter Pfeiffer at the University of Bielefeld and Prof. Zhiyuan Li at the Institute of Physics, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingquan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, B., Qin, J., Hao, Z. et al. Features of Local Electric Field Excitation in Asymmetric Nanocross Illuminated by Ultrafast Laser Pulse. Plasmonics 10, 1573–1580 (2015). https://doi.org/10.1007/s11468-015-9974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9974-6

Keywords

Navigation