Skip to main content
Log in

Synthesis and Optical Properties of Cu Core/Ti-Related Shell Nanoparticles in Silica Sequentially Implanted With Ti and Cu Ions

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Amorphous SiO2 samples were sequentially implanted with Ti and Cu ions and were then subjected to thermal annealing at different temperatures. The structures and optical properties of the synthesized nanoparticles (NPs) have been characterized in detail. Our results clearly show that the pre-implantation of Ti ions into SiO2 could strongly affect the nucleation and thermal growth of Cu NPs. Core-shell NPs consisting of Cu cores surrounded by Ti-related shells have been revealed in silica sequentially implanted with Ti and Cu ions at the same fluence of 5 × 1016 cm−2 followed by 800 °C annealing. The synthesized NPs exhibit significantly enhanced surface plasmon resonance (SPR) absorption and improved third-order nonlinear susceptibility as compared with those in the Cu singly implanted sample. The possible mechanisms responsible for the above results have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meldrum A, Haglund RF Jr, Boatner LA, White CW (2001) Nanocomposite materials formed by ion implantation. Adv Mater 13:1431–1444

    Article  CAS  Google Scholar 

  2. Willett DR, Chumanov G (2014) LSPR sensor combining sharp resonance and differential optical measurements. Plasmonics 9:1391–1396

    Article  CAS  Google Scholar 

  3. Carles R, Farcau C, Bonafos C, Benassayag G, Bayle M, Benzo P, Groenen J, Zwick A (2011) Three dimensional design of silver nanoparticle assemblies embedded in dielectrics for Raman spectroscopy enhancement and dark-field imaging. ACS Nano 5:8774–8782

    Article  CAS  Google Scholar 

  4. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  5. Mazzoldi P, Arnold GW, Battaglin G, Gonella F, Haglund RF Jr (1996) Metal nanocluster formation in slicate glasses: nonlinear optical applications. J Nonlinear Opt Phys Mater 5:285–330

    Article  CAS  Google Scholar 

  6. Márquez H, Salazar D, Rangel-Rojo R, Angel-Valenzuela JL, Vázquez GV, Flores-Romero E, Rodríguez-Fernández L, Oliver A (2013) Synthesis of optical waveguides in SiO2 by silver ion implantation. Opt Mater 35:927–934

    Article  Google Scholar 

  7. de Julián Fernández C, Sangregorio C, Mattei G, Maurizio C, Battaglin G et al (2001) Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix. Nucl Inst Methods Phys Res B 175–177:479–484

    Article  Google Scholar 

  8. Stepanov AL, Galyautdinov MF, Evlyukhin AB, Nuzhdin VI, Valeev VF, Osin YN, Evlyukhin EA, Kiyan R, Kavetskyy TS, Chichkov BN (2013) Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation. Appl Phys A 111:261–264

    Article  CAS  Google Scholar 

  9. Cai GX, Ren F, Xiao XH, Fan LX, Zhou XD, Jiang CZ (2009) Morphology control and optical absorption properties of Ag nanoparticles by ion implantation. J Mater Sci Technol 25:669–672

    CAS  Google Scholar 

  10. Mattei G, Mazzoldi P, Bernas H (2010) Metal nanoclusters for optical properties. Top Appl Phys 116:287–316

    Article  CAS  Google Scholar 

  11. Peña O, Pal U, Rodríguez-Fernández L, Silva-Pereyra HG, Rodríguez-Iglesias V, Cheang-Wong JC, Arenas-Alatorre J, Oliver A (2009) Formation of Au-Ag core-shell nanostructures in silica matrix by sequential ion implantation. J Phys Chem C 113:2296–2300

    Article  Google Scholar 

  12. Wang J, Jia GY, Zhang B, Liu HX, Liu CL (2013) Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: synthesis of the modified Ag nanoparticles. J Appl Phys 113:034304

    Article  Google Scholar 

  13. Magruder RH III, Meldrum A (2005) Effect of Ti on the optical properties of Ag nanocrystals in silica. J Appl Phys 98:024306

    Article  Google Scholar 

  14. Zhong JS, Xiang WD, Zhao HJ, Zhao WG, Chen GX, Liang XJ (2012) Synthesis, characterization, and third-order nonlinear optical properties of copper quantum dots embedded in sodium borosilicate glass. J Alloys Compd 537:269–274

    Article  CAS  Google Scholar 

  15. Coso RD, Requejo-Isidro J, Solis J, Gonzalo J, Afonso CN (2004) Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold. J Appl Phys 95:2755–2762

    Article  Google Scholar 

  16. Uchida K, Kaneko S, Omi S, Hata C, Tanji H, Asahara Y, Ikushima AJ (1994) Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J Opt Soc Am B 11:1236–1243

    Article  CAS  Google Scholar 

  17. Pastoriza-Santos I, Sánchez-Iglesias A, Rodríguez-González B, Liz-Marzán LM (2009) Aerobic synthesis of Cu nanoplates with intense plasmon resonances. Small 5:440–443

    Article  CAS  Google Scholar 

  18. Jia GY, Wang J, Zhang LH, Liu HX, Xu R, Liu CL (2013) Remarkably enhanced surface plasmon resonance absorption of Cu nanoparticles in SiO2 by post Zn ion implantation. EPL 101:57005

    Article  Google Scholar 

  19. Wang J, Zhang LH, Zhang XD, Shen YY, Liu CL (2013) Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions. J Alloy Comp 549:231–237

    Article  CAS  Google Scholar 

  20. Ziegler JF (2013) Computer code, SRIM. http://www.srim.org/

  21. Magruder RH III, Haglund RF Jr, Yang L, Wittig JE, Zuhr RA (1994) Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica. J Appl Phys 76:708–715

    Article  CAS  Google Scholar 

  22. Allerd AL (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221

    Article  Google Scholar 

  23. Bertoncello R, Glisenti A, Granozzi G, Battaglin G, Caccavale F, Cattaruzza E, Mazzoldi P (1993) Chemical interactions in titanium and tungsten implanted fused silica. J Non-Cryst Solids 162:205–216

    Article  CAS  Google Scholar 

  24. Bourgoin JC, Corbett JW (1978) Enhanced diffusion mechanisms. Radiat Eff 36:157–188

    Article  CAS  Google Scholar 

  25. Murray JL (1983) The Cu-Ti (copper-titanium) system. Bull Alloy Phase Diagr 4:81–95

    Article  Google Scholar 

  26. Zhao JP, Chen ZY, Lu M, Rabalais JW (2003) Linear optical properties of a Ti-SiO2 nanoparticle composite. J Appl Phys 93:566–575

    Article  CAS  Google Scholar 

  27. Johannessen B, Kluth P, Glover CJ, Azevedo GDM, Llewellyn DJ, Foran GJ, Ridgway MC (2005) Structural characterization of Cu nanocrystals formed in SiO2 by high-energy ion-beam synthesis. J Appl Phys 98:024307

    Article  Google Scholar 

  28. Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231–252

    Article  Google Scholar 

  29. Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769

    Article  CAS  Google Scholar 

  30. Stepanov AL (2011) Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review. Rev Adv Mater Sci 27:115–145

    CAS  Google Scholar 

  31. Cattaruzza E, Battaglin G, Gonella F, Mattei G, Mazzoldi P, Polloni R, Scremin BF (2005) Fast third-order optical nonlinearities in metal alloy nanocluster composite glass negative sign of the nonlinear refractive index. Appl Surf Sci 247:390–395

    Article  CAS  Google Scholar 

  32. Lines ME (1991) Oxide glasses for fast photonic switching: a comparative study. J Appl Phys 69:6876–6884

    Article  CAS  Google Scholar 

  33. Magruder RH III, Zuhr RA, Osborne DH Jr (1995) Modification of the optical properties of glass by sequential ion implantation. Nucl Inst Methods Phys Res B 99:590–593

    Article  CAS  Google Scholar 

  34. Murzina TV, Kolmychek IA, Wouters J, Verbiest T, Aktsipetrov OA (2012) Plasmon-assisted enhancement of third-order nonlinear optical effects in core (shell) nanoparticles. J Opt Soc Am B 29:138–143

    Article  Google Scholar 

  35. Gong HM, Wang XH, Du YM, Wang QQ (2006) Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots. J Chem Phys 125:024707

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of China (No. 11175129) and the Natural Science Foundation of Tianjin (No. 12JCZDJC 26900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, C., Jia, G., Mu, X. et al. Synthesis and Optical Properties of Cu Core/Ti-Related Shell Nanoparticles in Silica Sequentially Implanted With Ti and Cu Ions. Plasmonics 10, 1869–1876 (2015). https://doi.org/10.1007/s11468-015-9964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9964-8

Keywords

Navigation