Skip to main content
Log in

Multi-mode Plasmonically Induced Transparency in Dual Coupled Graphene-Integrated Ring Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a highly wavelength-tunable multi-mode plasmonically induced transparency (PIT) device based on monolayer graphene and graphene rings for the mid-IR region. The proposed PIT systems explore the near-field coupling and phase coupling between two graphene resonators. The multi-mode transparency windows in the spectral response have been observed in the graphene-integrated configurations. By varying the Fermi energy of the graphene, the multi-mode PIT resonance can be actively controlled without reoptimizing the geometric parameters of the structures. Based on the coupled mode theory and Fabry-Perot model, we numerically investigated the two kinds of coupling in the graphene-based PIT systems. This work may pave the ways for the further development of a compact high-performance PIT device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boller KJ, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593–2596

    Article  CAS  Google Scholar 

  2. Harris SE (1997) Electromagnetically induced transparency. Phys Today 50:36–42

    Article  CAS  Google Scholar 

  3. Krauss TF (2008) Why do we need slow light? Nat Photonics 2:448–450

    Article  CAS  Google Scholar 

  4. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673

    Article  CAS  Google Scholar 

  5. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  6. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  7. Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen H, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151

    Article  Google Scholar 

  8. Guo YH, Yan LS, Pan W, Luo B, Wen KH, Guo Z, Luo XG (2012) Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt Express 20:24348–24355

    Article  Google Scholar 

  9. Liu X, Gu J, Singh R, Ma Y, Zhu J, Tian Z, He M, Han J, Zhang W (2012) Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. Appl Phys Lett 100:131101

    Article  Google Scholar 

  10. Cao GT, Li HJ, Zhan SP, Xu HQ, Liu ZM, He ZH, Wang Y (2013) Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators. Opt Express 21:9198–9205

    Article  Google Scholar 

  11. Wang JQ, Yuan BH, Fan CZ, He JN, Ding P, Xue QZ, Liang EJ (2013) A novel planar metamaterial design for electromagnetically induced transparency and slow light. Opt Express 21:25159–25166

    Article  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  13. Li ZQ, Henriksen EA, Jiang Z, Hao Z, Martin MC, Kim P, Stormer HL, Basov DN (2008) Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys 4:532–535

    Article  CAS  Google Scholar 

  14. Efetov DK, Kim P (2010) Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 105:256805

    Article  Google Scholar 

  15. Bao QL, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  CAS  Google Scholar 

  16. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    Article  CAS  Google Scholar 

  17. Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100:131111

    Article  Google Scholar 

  18. Wang B, Zhang X, Garcia-Vidal FJ, Yuan X, Teng J (2012) Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys Rev Lett 109:073901

    Article  Google Scholar 

  19. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  20. Chu HS, Gan CH (2013) Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett 102:231107

    Article  Google Scholar 

  21. Fang ZY, Thongrattanasiri S, Schlather A, Liu Z, Ma LL, Wang YM, Ajayan PM, Nordlander P, Halas NJ, de Abajo FJG (2013) Gated tunability and hybridization of localized plasmons in nanostructured grapheme. ACS Nano 7:2388–2395

    Article  CAS  Google Scholar 

  22. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  23. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  CAS  Google Scholar 

  24. Thongrattanasiri SL, Koppens FH, de Abajo FJG (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:047401

    Article  Google Scholar 

  25. Fallahi A, Perruisseau-Carrier J (2012) Design of tunable biperiodic graphene metasurfaces. Phys Rev B 86:195408

    Article  Google Scholar 

  26. Zeng C, Guo J, Liu XM (2014) High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Perot microcavity. Appl Phys Lett 105:121103

    Article  Google Scholar 

  27. Shi X, Han DZ, Dai YY, Yu ZF, Sun Y, Chen H, Liu XH, Zi J (2013) Plasmonic analog of electromagnetically induced transparency in nanostructure grapheme. Opt Express 21:28438–28443

    Article  Google Scholar 

  28. Jin JM (2002) The finite element method in electromagnetics. Wiley-IEEE Press, New York

    Google Scholar 

  29. Chen PY, Alu A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5:5855–5863

    Article  CAS  Google Scholar 

  30. Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:084314

    Article  Google Scholar 

  31. Lu WB, Zhu W, Xu HJ, Ni ZH, Dong ZG, Cui TJ (2013) Flexible transformation plasmonics using grapheme. Opt Express 21:10475–10482

    Article  CAS  Google Scholar 

  32. Haus HA, Huang WP (1991) Coupled-mode theory. Proc IEEE 79:1505–1518

    Article  Google Scholar 

  33. Huang ZR, Wang LL, Sun B, He MD, Liu JQ, Li HJ, Zhai X (2014) A mid-infrared fast-tunable graphene ring resonator based on guided-plasmonic wave resonance on a curved graphene surface. J Opt 16:105004

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Grant No. 11347196, 11404143, 61474113), the Jiangsu Natural Science Foundation (Grant No. BK20140167, BK20140128, BK2012548), the Beijing Natural Science Foundation (Grant No. 4132076), the Key Laboratory Open Fund of Institute of Semiconductors of CAS (Grant No. KLSMS-1405), the Youth Innovation Promotion Association of CAS, and the National Training Programs of Innovation and Entrepreneurship for Undergraduates of China (Grant No. 201410295027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Wang, J., Zhang, F. et al. Multi-mode Plasmonically Induced Transparency in Dual Coupled Graphene-Integrated Ring Resonators. Plasmonics 10, 1409–1415 (2015). https://doi.org/10.1007/s11468-015-9955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9955-9

Keywords

Navigation