Skip to main content
Log in

Spectral Red-Shift and Pulse Splitting in Nonlinear Dielectric-Loaded Plasmonic Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A long-range dielectric-loaded SPP waveguide (LR-DLSPPW) featuring tight mode confinement, long propagation length, and highly nonlinear response is proposed. Finite element method (FEM) simulation of linear analysis is followed by numerical solution of the generalized nonlinear Schrödinger equation (GNLSE). Nonlinear propagation of the plasmonic-guided mode along the LR-DLSPPW is supposed to be originated from the thermo-modulational nonlinearity of the metal strip and the third-order nonlinear susceptibility of the dielectric ridge section. The results manifest the appearance of an intense spectral red-shift and self phase modulation (SPM) caused by the delayed thermo-modulational nonlinearity of metal. Increment of the input power highlights the third-order nonlinearity effect of the ridge section which is associated with the pulse splitting of the input. Low-input threshold power for the observation of nonlinear effects, due to low propagation loss of the structure and local field enhancement nature of plasmonic waves, is a distinguished feature of the proposed LR-DLSPPW configuration which is valuable for applications involving nonlinear phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin Heidelberg

    Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641

    Article  CAS  Google Scholar 

  4. Holmgaard T, Gosciniak J, Bozhevolnyi SI (2010) Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt Express 18:23009–23015

    Article  CAS  Google Scholar 

  5. Zia R, Selker M, Catrysse P, MLBrongersma (2004) Geometries and materials for sub-wavelength surface plasmon modes. Opt Soc Am A 21:2442–2446

    Article  Google Scholar 

  6. Adelpour Z, Ghorbani A, Ahmadi V (2014) Amplification of surface plasmon polaritons in nonlinear medium with full saturation susceptibility model. J Opt Soc Am B 31:1672–1675

    Article  CAS  Google Scholar 

  7. Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2:478–489

    Article  CAS  Google Scholar 

  8. Maier SA, Kik PG, Atwater HA (2002) Observation of coupled plasmon-polariton modes in au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl Phys Lett 81:1714–1716

    Article  CAS  Google Scholar 

  9. Leosson K, Nikolajsen T, Boltasseva A, Bozhevolnyi SI (2006) Long-range surface plasmon polariton nanowire waveguides for device applications. Opt Express 14:314

    Article  CAS  Google Scholar 

  10. Bozhevolnyi S, Volkov V, Devaux E, Ebbesen T (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:046802

    Article  Google Scholar 

  11. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1:484–588

    Article  CAS  Google Scholar 

  12. Binfeng Y, Guohua H, Yiping C (2009) Bound modes analysis of symmetric dielectric loaded surface plasmonpolariton waveguides. Opt Express 17:3610–3618

    Article  Google Scholar 

  13. Chen J, Li Z, Yue S, Gong Q (2009) Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides. Opt Express 17:23603–23609

    Article  CAS  Google Scholar 

  14. Marini A, Gorbach AV, Skryabin DV, Zayats AV (2009) Amplification of surface plasmon polaritons in the presence of nonlinearity and spectral signatures of threshold crossover. Opt Lett 34:2864

    Article  CAS  Google Scholar 

  15. Yang G, Guan D, Wang W, Wu W, Chen Z (2004) The inherent optical nonlinearities of thin silver films. Opt Mater 25:439

    Article  CAS  Google Scholar 

  16. Smith DD, Yoon Y, Boyd RW, Campbell JK, Baker LA, Crooks RM, George M (1999) Z-scan measurement of the nonlinear absorption of a thin gold film. J Appl Phys 86:6200

    Article  CAS  Google Scholar 

  17. Lee TK, Bristow AD, Hubner J, van Driel HM (2006) Linear and nonlinear optical properties of au-polymer metallodielectric bragg stacks. J Opt Soc Am B 23:2142

    Article  CAS  Google Scholar 

  18. Rotenberg N, Bristow AD, Pfeiffer M, Betz M, VanDriel HM (2007) Nonlinear absorption in au films: role of thermal effects. Phys Rev B 75:155426

    Article  Google Scholar 

  19. Bennink RS, Yoon YK, Boyd RW, Sipe JE (1999) Accessing the optical nonlinearity of metals with metal–dielectric photonic bandgap structures. Opt Lett 24:1416–1418

    Article  CAS  Google Scholar 

  20. Husakou A, Herrmann J (2007) Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant. Phys Rev Lett 99:127402

    Article  CAS  Google Scholar 

  21. Ginzburg P, Hayat A, Berkovitch N, Orenstein M (2010) Nonlocal ponderomotive nonlinearity in plasmonics. Opt Lett 35:1551

    Article  Google Scholar 

  22. Davoyan AR (2011) Plasmonic couplers with metal nonlinearities. Phys Lett A 375:1615

    Article  CAS  Google Scholar 

  23. Crouseilles N, Hervieux PA, Manfredi G (2008) Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys Rev B 78:155412

    Article  Google Scholar 

  24. Rahmati AT, Granpayeh N (2014) Low power nonlinear active devices based on intrinsic metal nonlinearities. J Light Technol 32:3402–3408

    Article  Google Scholar 

  25. Conforti M, DellaValle G (2012) Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response. Phys Rev B 85:245423

    Article  Google Scholar 

  26. Marini A, Conforti M, Valle GD, Lee HW, Tran TX, Chang W, Schmidt MA, Longhi S, Russell PSJ, Biancalana F (2013) Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New J Phys 15:013033

    Article  Google Scholar 

  27. Ung B, Sheng Y (2007) Interference of surface waves in a metallic nanoslit. Opt Express 15:1182

    Article  Google Scholar 

  28. Sultanovaa N, Kasarovaa S, Nikolov I (2009) Dispersion properties of optical polymers. Acta Pysica Polonica A 116:585–587

    Google Scholar 

  29. Poon JKS, Zhu L, DeRose GA, Yariv A (2006) Transmission and group delay of microring coupled-resonator optical waveguides. Opt Lett 31:456–458

    Article  Google Scholar 

  30. Chen WY (2007) Benzocyclobutene Microring Resonators, ProQuest

  31. Afshar SV, Monro TM (2009) A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures Part I: Kerr nonlinearity. Opt Express 17:2298– 2318

    Article  Google Scholar 

  32. Burke J, Stegeman G, Tamlr T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33:5186

    Article  CAS  Google Scholar 

  33. Stuart BC, Feit MD, Herman S, Rubenchik A M, Shore BW, Perry MD (1996) Optical ablation by high-power short-pulse lasers. J Opt Soc Am B 13:459

    Article  CAS  Google Scholar 

  34. Trippenbach M, Band YB (1997) Dynamics of short-pulse splitting in dispersive nonlinear media. Phys Rev A 56:4242– 4253

    Article  CAS  Google Scholar 

  35. Ranka JK, Schirmer RW, Gaeta AL (1996) Observation of pulse splitting in nonlinear dispersive media. Phys Rev Lett 77:3883–3886

    Article  Google Scholar 

  36. Boyd R, Lukishova S, Shen Y (2009) Self-focusing: Past and Present. Springer

  37. Christov IP, Stoev VD, Murnane MM, Kapteyn HC (1996) Sub-10-fs operation of kerr-lens mode-locked lasers. Opt Lett 21:1493–1495

    Article  CAS  Google Scholar 

  38. Nisoli M, Silvestri SD, Svelto O (1996) Generation of high energy 10 fs pulses by a new pulse compression technique. Appl Phys Lett 68:2793

    Article  CAS  Google Scholar 

  39. Pigeon JJ, Tochitsky SY, Gong C, Joshi C (2014) Supercontinuum generation from 2 to 20um in gaas pumped by picosecond co2 laser pulses. Opt Lett 39:3246–3249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Adelpour.

Additional information

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelpour, Z., Ghorbani, A. & Ahmadi, V. Spectral Red-Shift and Pulse Splitting in Nonlinear Dielectric-Loaded Plasmonic Waveguide. Plasmonics 10, 1231–1238 (2015). https://doi.org/10.1007/s11468-015-9923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9923-4

Keywords

Navigation