Skip to main content
Log in

Universal Three-Dimensional Polarization-Dependent Optical Properties in Anisotropic Plasmonic Nanostar: a Route Boosting Single Particle 3D Orientation Determination and Orientation-Unlimited Polarization Information Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The three-dimensional (3D) polarization-dependent optical property is one distinctive characteristic of the anisotropic metal nanoparticles. This has the potential applications in 3D polarization information encryption to detect the polarization information and single particle 3D orientation determination. Previous studies almost focus on the condition that the polarization orientation is in-plane. In the present paper, we systematically investigate the 3D polarization-dependent near- and far-field properties of a kind of fascinating anisotropic nanoparticle, i.e., gold nanostar (AuNS). It shows that the scattering spectra of the AuNS induced by arbitrary incident polarizations can be described as a linear superposition of a set of basic scattering spectra. And we introduce a trigonometric equation to reveal the inherent relationship between the scattering intensity and the 3D polarization orientation, which is universally independent of the size, shape, or surrounding medium of the nanostar. Furthermore, it is facile to synthesize AuNS with two pairs of orthogonal different-length arms, based on the 3D polarization dependence of the scattering trait, and using coordinate transformation, we have demonstrated that such AuNS is useful for designing single particle 3D orientation and rotational tracking sensor and orientation-unlimited polarization information detector. And the self-rotation problem of the gold nanorod, i.e., rotation around the gold nanorod’s long axis cannot be resolved, can be solved by replacing it with AuNS. In addition, the precision of the 3D polarization angles and 3D orientation angles confirmed by our method is only with subdegree uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Spinger, New York

    Google Scholar 

  2. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422. doi:10.1126/science.1089171

    Article  CAS  Google Scholar 

  3. Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7(9):2854–2858. doi:10.1021/nl071496m

    Article  CAS  Google Scholar 

  4. Kong WJ, Cao PF, Zhang XP, Cheng L, Wang T, Yang LL, Meng QQ (2013) Near-infrared super resolution imaging with metallic nanoshell particle chain array. Plasmonics 8(2):835–842. doi:10.1007/s11468-013-9480-7

    Article  CAS  Google Scholar 

  5. Halas NJ, Lal S, Link S, Chang WS, Natelson D, Hafner JH, Nordlander P (2012) A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv Mater 24(36):4842–4877. doi:10.1002/adma.201202331

    Article  CAS  Google Scholar 

  6. Cooper CT, Rodriguez M, Blair S, Shumaker-Parry JS (2014) Polarization anisotropy of multiple localized plasmon resonance modes in noble metal nanocrescents. J Phys Chem C 118(2):1167–1173. doi:10.1021/jp4107876

    Article  CAS  Google Scholar 

  7. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825. doi:10.1002/adma.200902557

    Article  CAS  Google Scholar 

  8. Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961. doi:10.1021/cr200061k

    Article  CAS  Google Scholar 

  9. Ellenbogen T, Seo K, Crozier KB (2012) Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12(2):1026–1031. doi:10.1021/nl204257g

    Article  CAS  Google Scholar 

  10. Ming T, Zhao L, Yang Z, Chen HJ, Sun LD, Wang JF, Yan CH (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9(11):3896–3903. doi:10.1021/nl902095q

    Article  CAS  Google Scholar 

  11. King NS, Knight MW, Large N, Goodman AM, Nordlander P, Halas NJ (2013) Orienting nanoantennas in three dimensions to control light scattering across a dielectric interface. Nano Lett 13(12):5997–6001. doi:10.1021/nl403199z

    Article  CAS  Google Scholar 

  12. Nehl CL, Liao HW, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6(4):683–688. doi:10.1021/nl052409y

    Article  CAS  Google Scholar 

  13. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7(3):729–732. doi:10.1021/nl062969c

    Article  CAS  Google Scholar 

  14. Gu Y, Ha JW, Augspurger AE, Chen KC, Zhu SB, Fang N (2013) Single particle orientation and rotational tracking (SPORT) in biophysical studies. Nanoscale 5(22):10753–10764. doi:10.1039/c3nr02254d

    Article  CAS  Google Scholar 

  15. Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang GF, Li JJ, Cheng JX, Huang B, Fang N (2013) Single cell optical imaging and spectroscopy. Chem Rev 113(4):2469–2527. doi:10.1021/cr300336e

    Article  CAS  Google Scholar 

  16. Marchuk K, Fang N (2013) Three-dimensional orientation determination of stationary anisotropic nanoparticles with sub-degree precision under total internal reflection scattering microscopy. Nano Lett 13(11):5414–5419. doi:10.1021/nl4029818

    Article  CAS  Google Scholar 

  17. Liu XL, Wang JH, Liang S, Yang DJ, Nan F, Ding SJ, Zhou L, Hao ZH, Wang QQ (2014) Tuning plasmon resonance of gold nanostars for enhancements of nonlinear optical response and Raman scattering. J Phys Chem C 118(18):9659–9664. doi:10.1021/jp500638u

    Article  CAS  Google Scholar 

  18. Ma WY, Yang H, Hilton JP, Lin Q, Liu JY, Huang LX, Yao J (2010) A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures. Opt Express 18(2):843–853. doi:10.1364/oe.18.000843

    Article  CAS  Google Scholar 

  19. Rodriguez-Lorenzo L, Alvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stephan O, Kociak M, Liz-Marzan LM, de Abajo FJG (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131(13):4616. doi:10.1021/ja809418t

    Article  CAS  Google Scholar 

  20. Dondapati SK, Sau TK, Hrelescu C, Klar TA, Stefani FD, Feldmann J (2010) Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4(11):6318–6322. doi:10.1021/nn100760f

    Article  CAS  Google Scholar 

  21. Hrelescu C, Sau TK, Rogach AL, Jackel F, Feldmann J (2009) Single gold nanostars enhance Raman scattering. Appl Phys Lett 94(15):153113. doi:10.1063/1.3119642

    Article  Google Scholar 

  22. Hrelescu C, Sau TK, Rogach AL, Jackel F, Laurent G, Douillard L, Charra F (2011) Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. Nano Lett 11(2):402–407. doi:10.1021/nl103007m

    Article  CAS  Google Scholar 

  23. Yuan HK, Khoury CG, Hwang H, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102. doi:10.1088/0957-4484/23/7/075102

    Article  Google Scholar 

  24. Guerrero-Martinez A, Barbosa S, Pastoriza-Santos I, Liz-Marzan LM (2011) Nanostars shine bright for you colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 16(2):118–127. doi:10.1016/j.cocis.2010.12.007

    Article  CAS  Google Scholar 

  25. Chen SH, Wang ZL, Ballato J, Foulger SH, Carroll DL (2003) Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc 125(52):16186–16187. doi:10.1021/ja038927x

    Article  CAS  Google Scholar 

  26. Bardhan R, Neumann O, Mirin N, Wang H, Halas NJ (2009) Au nanorice assemble electrolytically into mesostars. ACS Nano 3(2):266–272. doi:10.1021/nn800657t

    Article  CAS  Google Scholar 

  27. Gopalakrishnan A, Chirumamilla M, De Angelis F, Toma A, Zaccaria RP, Krahne R (2014) Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules. ACS Nano 8(8):7986–7994. doi:10.1021/nn5020038

    Article  CAS  Google Scholar 

  28. Li XP, Lan TH, Tien CH, Gu M (2012) Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3:998. doi:10.1038/ncomms2006

    Article  Google Scholar 

  29. Chettiar UK, Liu Z, Thoreson MD, Shalaev VM, Drachev VP, Pack MV, Kildishev AV, Nyga P (2010) Studies on metal-dielectric plasmonic structures. Sandia National Laboratories. doi:10.2172/973344

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  31. You EA, Zhou W, Suh JY, Huntington MD, Odom TW (2012) Polarization-dependent multipolar plasmon resonances in anisotropic multiscale Au particles. ACS Nano 6(2):1786–1794. doi:10.1021/nn204845z

    Article  Google Scholar 

  32. Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J, Xu HX (2010) Multipolar plasmon resonances in individual Ag nanorice. ACS Nano 4(5):2649–2654. doi:10.1021/nn1002419

    Article  CAS  Google Scholar 

  33. Muskens OL, Bachelier G, Del Fatti N, Vallee F, Brioude A, Jiang XC, Pileni MP (2008) Quantitative absorption spectroscopy of a single gold nanorod. J Phys Chem C 112(24):8917–8921. doi:10.1021/jp8012865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Funds of China under Grant No.61205204, and in part by Fundamental Research Funds for the Central Universities under Grant Nos. lzujbky-2014-45, lzujbky-2014-48, and lzujbky-2014-236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Kong, W., Cheng, L. et al. Universal Three-Dimensional Polarization-Dependent Optical Properties in Anisotropic Plasmonic Nanostar: a Route Boosting Single Particle 3D Orientation Determination and Orientation-Unlimited Polarization Information Detection. Plasmonics 10, 1185–1193 (2015). https://doi.org/10.1007/s11468-015-9910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9910-9

Keywords

Navigation