Skip to main content
Log in

Enhanced and Selective Photodetection Using Graphene-Stabilized Hybrid Plasmonic Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report the fabrication and characteristics of a novel graphene-Ag0 hybrid plasmonic nanostructure-based photodetector exhibiting moderately high responsivity (∼28 mA/W) and spectral selectivity (∼510 nm) in the visible wavelength. The formation of highly stable Ag0 nanoparticles with an average size of 40 nm is observed within the graphene layers, resulting in n-type doping of hybrid material. The absorption peak of graphene-Ag0 hybrid is redshifted to the visible wavelength (∼510 nm) from the plasmonic Ag peak (∼380 nm) in agreement with the optical simulation results for embedded metal nanoparticles. The study demonstrates the synergistic effect of the graphene-metal nanocomposite, which appears attractive for applications in graphene-based photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Article  CAS  Google Scholar 

  2. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and opto-electronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  Google Scholar 

  3. Splendiani A, Sun L, Zhang YB, Li TS, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    Article  CAS  Google Scholar 

  4. Mukherjee S, Maiti R, Midya A, Das S, Ray SK (2015) ACS Photon 2:760

    Article  CAS  Google Scholar 

  5. Ozbay E (2006) Merging photonics and electronics at nanoscale dimensions. Science 311(5758):189

    Article  CAS  Google Scholar 

  6. Liang Z, Sun J, Jiang Y, Jiang L, Chen X (2014) Plasmonic enhanced optoelectronic devices. Plasmonics 9:859–866

    Article  Google Scholar 

  7. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys Condens Matter 4:1143

    Article  CAS  Google Scholar 

  8. Kneipp K, Wang Y, Kniepp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667

    Article  CAS  Google Scholar 

  9. Gogurla N, Sinha AK, Santra S, Manna S, Ray SK (2014) Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci Rep 4:6483

    Article  CAS  Google Scholar 

  10. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205

    Article  CAS  Google Scholar 

  11. Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329:930

    Article  CAS  Google Scholar 

  12. Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458

    Article  CAS  Google Scholar 

  13. Liu WL, Lin FC, Yang YC, Huang CH, Gwo S, Huang MH, Huang J (2013) The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale 5:7953

    Article  CAS  Google Scholar 

  14. Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan XF (2011) Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun 2:579

    Article  Google Scholar 

  15. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171

    Article  CAS  Google Scholar 

  16. Bennett H, Peck R, Burge D, Bennett J (1969) Formation and growth of tarnish on evaporated silver films. J Appl Phys 40:3351

    Article  CAS  Google Scholar 

  17. Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman M (2005) Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. J Chem Mater 17(24):6042–6052

    Article  CAS  Google Scholar 

  18. Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083

    Article  CAS  Google Scholar 

  19. Pastoriza-Santos I, Liz-Marzán LM (1999) Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 15:948–951

    Article  CAS  Google Scholar 

  20. Lu L, Liu J, Hu Y, Zhang Y, Chen W (2013) Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv Mater 25:1270

    Article  CAS  Google Scholar 

  21. Muetteries EL, Bleeke JR, Wuchere EJ (1982) Structural, stereochemical, and electronic features of arene-metal complexes. Chem Rev 82:499

    Article  Google Scholar 

  22. Heimel G, Duhm S, Salzmann I, Gerlach A, Strozecka A, Niederhausen J, Bürker C, Hosokai T, FernandezTorrente I, Schulze Winkler GS, Wilke A, Schlesinger R, Frisch J, Bro¨ker B, Vollmer A, Detlefs B, Pflaum J, Kera S, Franke KJ, Ueno N, Pascual JI, Schreiber F, Koch N (2013) Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nat Chem 5:187

    Article  CAS  Google Scholar 

  23. Popov IA, Bozhenko KV, Boldyrev AI (2012) Nano Res 5:117

    Article  CAS  Google Scholar 

  24. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352

    Article  CAS  Google Scholar 

  25. Malarda LM, Pimentaa MA, Dresselhausb G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51

    Article  Google Scholar 

  26. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235

    Article  CAS  Google Scholar 

  27. Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoslov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210

    Article  CAS  Google Scholar 

  28. Shi Y, Dong X, Chen P, Wang J, Li L-J (2009) Effective doping of single-layer graphene from underlying SiO2 substrates. Phys Rev B 79:115402

    Article  Google Scholar 

  29. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  30. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901

    Article  Google Scholar 

  31. Le Ru EC, Etchegoin PG (2008) Principals of surface enhanced Raman spectroscopy. Elsevier

  32. Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y, Tsang J, Perebeinos V, Avouris P (2009) Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett 9:1039–1044

    Article  CAS  Google Scholar 

  33. Maiti R, Manna S, Midya A, Ray SK (2013) Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions. Opt Express 21(22):26034–26043

    Article  Google Scholar 

  34. Matheu P, Lim SH, Derkacs D, McPheeters C, Yu ET (2008) Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett 93(11):113108

    Article  Google Scholar 

  35. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  36. Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the partial funding from CSIR-sponsored “GBH” and DST-ITPAR-sponsored “GPU” projects. The use of the XPS facility of the Department of Physics, IIT Kharagpur, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit K. Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, R., Sinha, T.K., Mukherjee, S. et al. Enhanced and Selective Photodetection Using Graphene-Stabilized Hybrid Plasmonic Silver Nanoparticles. Plasmonics 11, 1297–1304 (2016). https://doi.org/10.1007/s11468-015-0175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0175-0

Keywords

Navigation