Skip to main content
Log in

Enhanced Terahertz Transmission Through Bullseye Plasmonics Lenses Fabricated Using Micromilling Techniques

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Imaging applications at terahertz frequencies are, in general, limited to relatively low spatial resolution due to the effects of diffraction. By using a subwavelength aperture in the near-field, however, it is possible to achieve subwavelength resolution, although low transmission through the aperture limits the sensitivity of this approach. Plasmonic lenses in the form of bullseye structures, which consist of a circular subwavelength aperture surrounded by concentric periodic corrugations, have demonstrated enhanced transmission, thereby increasing the utility of near-field imaging configurations. In this paper, the design, fabrication, and experimental performance of plasmonic lenses optimized for 300 GHz are discussed. While nanofabrication techniques are required for optical applications, microfabrication techniques are sufficient for terahertz applications. The process flow for fabricating a double-sided bullseye structure using a precision micromilling technique is described. Transmission and beam profile measurements using a customized terahertz testbed are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pickwell E, Wallace VP (2006) J Phys D 39(17):R301

    Article  CAS  Google Scholar 

  2. Yin X, Ng BWH, Abbott D (2012) Terahertz imaging for biomedical applications, 1st edn. Springer, New York

    Book  Google Scholar 

  3. Chiu CM, Chen HW, Huang YR, Hwang YJ, Lee WJ, Huang HY, Sun CK (2009) Opt Lett 34(7):1084

    Article  Google Scholar 

  4. Born M, Wolf E (1999) Principles of optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Hunsche S, Koch M, Brener I, Nuss M (1998) Opt Commun 150:22

    Article  CAS  Google Scholar 

  6. Bethe HA (1944) Phys Rev 66(7–8):163

    Article  Google Scholar 

  7. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667

    Article  CAS  Google Scholar 

  8. Degiron A, Ebbesen TW (2004) Opt Express 12(16):3694

    Article  CAS  Google Scholar 

  9. Pellerin K, Lezec H, Ebbesen T, Linke R, Thio T (2001) . In: Proceedings of the 2001 1st IEEE Conference on Nanotechnol., pp 293–298

  10. Lezec HJ, Degiron A, Devaux E, Linke RA, Martín-Moreno L, García-Vidal FJ, Ebbesen TW (2002) Science 297:820

    Article  CAS  Google Scholar 

  11. Ishihara K, ichi Hatakoshi G, Ikari T, Minamide H, Ito H, Ohashi K (2005) Jpn J Appl Phys 44(32):L1005

    Article  CAS  Google Scholar 

  12. Shi H, Du C, Luo X (2007) Appl Phys Lett 91(9):093111

    Article  Google Scholar 

  13. Hao F, Wang R, Wang J (2010) Plasmonics 5(1):45

    Article  Google Scholar 

  14. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin Heidelberg

  15. Ru ECL, Etchegoin PG (2009) Principles of surface-enhanced raman spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  16. Lumerical Solutions, Inc (2015) http://www.lumerical.com/tcad-products/fdtd/ http://www.lumerical.com/tcad-products/fdtd/

  17. Johnson PB, Christy RW (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  18. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Appl Opt 22(7):1099

    Article  CAS  Google Scholar 

  19. Azad AK, Zhang W (2005) Opt Lett 30(21):2945

    Article  Google Scholar 

  20. Baragwanath A, Freeman J, Gallant A, Zeitler J, Beere H, Ritchie D, Chamberlain M (2010) . In: 35th international conference on infrared millimeter and terahertz waves , pp 1–2

  21. Mahboub O, Palacios SC, Genet C, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Ebbesen TW (2010) Opt Express 18(11):11292

    Article  CAS  Google Scholar 

  22. Kraus JD, Carver KR (1973) Electromagnetics, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  23. García-Vidal FJ, Martín-Moreno L, Lezec HJ, Ebbesen TW (2003) Appl Phys Lett 83(22):4500

    Article  Google Scholar 

  24. Caglayan H, Bulu I, Ozbay E, Opt J (2006) Soc Am B 23(3):419

    Article  CAS  Google Scholar 

  25. Kim S, Lim Y, Kim H, Park J, Lee B (2008) Appl Phys Lett 92(1):013103

    Article  Google Scholar 

  26. Jia B, Shi H, Li J, Fu Y, Du C, Gu M (2009) Appl Phys Lett 94(15):151912

    Article  Google Scholar 

  27. Wang J, Zhou W (2009) Plasmonics 4(3):231

    Article  CAS  Google Scholar 

  28. Mote RG, Zhou W, Fu Y (2010) Optik 121(21):1962

    Article  CAS  Google Scholar 

  29. Hao F, Wang R, Wang J (2010). Plasmonics 5(4):405

    Article  Google Scholar 

  30. NRC Automotive and Surface Transportation (2015) http://www.nrc-cnrc.gc.ca/eng/rd/ast/

  31. Virginia Diodes (2015) http://vadiodes.com/

  32. Johansson JF, Whyborn ND (1991) IEEE Trans on Microw Theory and Techn 40(5):63

    Google Scholar 

  33. Malone RM, Becker SA, Dolan DH, Hacking RG, Hickman RJ, Kaufman MI, Stevens GD, Turley WD (2006) Proc SPIE 6288:62880Z

  34. Dobroiu A, Yamashita M, Ohshima YN, Morita Y, Otani C, Kawase K (2004) Appl Opt 43 (30):5637

    Article  Google Scholar 

  35. Emerson & Cuming Microwave Products, Inc (2015) http://www.eccosorb.com/ http://www.eccosorb.com/

  36. Agrawal A, Cao H, Nahata A (2005) Opt Express 13(9):3535

    Article  Google Scholar 

  37. Caglayan H, Bulu I, Ozbay E (2005) Opt Express 13(5):1666

    Article  Google Scholar 

  38. Gonzalez R, Woods R (2008) Digital image processing. Pearson/Prentice Hall

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanner J. Heggie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heggie, T.J., Naylor, D.A., Gom, B.G. et al. Enhanced Terahertz Transmission Through Bullseye Plasmonics Lenses Fabricated Using Micromilling Techniques. Plasmonics 11, 1139–1149 (2016). https://doi.org/10.1007/s11468-015-0152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0152-7

Keywords

Navigation