Skip to main content
Log in

Dark Plasmon-Solitons in Plasmonic Photonic Crystal Fiber Induced by Thermo-Modulational Nonlinearity of Metal

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, formation of dark plasmon-soliton in a plasmonic photonic crystal fiber (PPCF) structure is predicted and analyzed by the use of the generalized nonlinear Schrödinger equation (GNLSE). Linear analysis of the plasmonic guided modes in the proposed structure offers a lower attenuation and dispersion values compared with the conventional core metallic fiber. Kerr coefficient of the silica background and the thermo-modulational nonlinearity of the gold are considered as the origins of nonlinear behavior. A delicate balance between normal dispersion and nonlinear characteristics of the structure provides the necessary condition for the formation of dark plasmon-soliton. Moreover, the thermo-modulational nonlinearity of metal is accompanied by the delayed propagation of the guided modes which is well justified throughout the simulations. Undistorted and time-delayed propagation of solitary plasmonic modes is a key point for the potential applications in the future all-optical devices, sensing platforms, and frequency conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons. Springer, Berlin

    Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. Park IY, Kim S, Choi J, Lee DH, Kim YJ, Kling MF, Stockman MI, Kim SW (2011) Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photon 5:677

    Article  CAS  Google Scholar 

  4. Utikal T, Zentgraf T, Paul T, Rockstuhl C, Lederer F, Lippitz M, Giessen H (2011) Towards the origin of the nonlinear response in hybrid plasmonic systems. Phys Rev Lett 106:133,901

    Article  Google Scholar 

  5. Utikal T, Hentschel M, Giessen H (2011) Nonlinear photonics with metallic nanostructures on top of dielectrics and waveguides. Appl Phys B 105:51

    Article  CAS  Google Scholar 

  6. Davoyan AR, Shadrivov IV, Kivshar YS (2009) Self-focusing and spatial plasmon-polariton solitons. Opt Express 17(24):21,732–21,737

    Article  CAS  Google Scholar 

  7. Cai W, Vasudev AP, Brongersma ML (2011) Electrically controlled nonlinear generation of light with plasmonics. Science 333:1720

    Article  CAS  Google Scholar 

  8. Verhagen E, Kuipers L, Polman A (2007) Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett 7:334

    Article  CAS  Google Scholar 

  9. Adelpour Z, Ghorbani A, Ahmadi V (2014) Amplification of surface plasmon polaritons in nonlinear medium with full saturation susceptibility model. J Opt Soc Am B 31:1672–1675

    Article  CAS  Google Scholar 

  10. MacDonald KF, Samson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3:55

    Article  CAS  Google Scholar 

  11. Palomba S, Harutyunyan H, Renger J, Quidant R, van Hulst NF, Novotny L (2011) Nonlinear plasmonics at planar metal surfaces. Phil Trans R Soc A 369:3497

    Article  CAS  Google Scholar 

  12. Feigenbaum E, Orenstein M (2007) Plasmon soliton. Opt Lett 32:674–676

    Article  Google Scholar 

  13. Marini A, Skryabin DV, Malomed B (2011) Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss. Opt Express 19:6616

    Article  CAS  Google Scholar 

  14. Ye F, Mihalache D, Hu B, Panoiu NC (2010) Subwavelength plasmonic lattice solitons in arrays of metallic nanowires. Phys Rev Lett 104:106,802

    Article  CAS  Google Scholar 

  15. Leon ID, Shi Z, Liapis AC, Boyd RW (2014) Measurement of the complex nonlinear optical response of a surface plasmon-polariton. Opt Lett 39:2274–2277

    Article  Google Scholar 

  16. Davoyan AR (2011) Plasmonic couplers with metal nonlinearities. Phys Lett A 375:1615

    Article  CAS  Google Scholar 

  17. Marini A, Conforti M, Valle GD, Lee HW, Tran TX, Chang W, Schmidt MA, Longhi S, Russell PSJ, Biancalana F (2013) Ultrafast nonlinear dynamics of surface plasmon polaritons in gold nanowires due to the intrinsic nonlinearity of metals. New J Phys 15:013,033

    Article  Google Scholar 

  18. Uebel P, Schmidt MA, Lee HW, Russell PS (2012) Polarisation-resolved near-field mapping of a coupled gold nanowire array. Opt Express 20:28,409

    Article  CAS  Google Scholar 

  19. Uebel P, Bauerschmidt ST, Schmidt MA, Russell PS (2013) A gold-nanotip optical fiber for plasmon-enhanced near-field detection. Appl Phys Lett 103:021,101

    Article  Google Scholar 

  20. Uebel P, Schmidt MA, Scharrer M, Russell PSJ (2011) An azimuthally polarizing photonic crystal fibre with a central gold nanowire. New J Phys 13:063,016

    Article  Google Scholar 

  21. Lee HW, Schmidt MA, Russell PSJ (2012) Excitation of a nanowire molecule in gold-filled photonic crystal fiber. Opt Lett 37:2946–2948

    Article  CAS  Google Scholar 

  22. Leibfried D, Blatt R, Monroe C, Wineland D (2003) Quantum dynamics of single trapped ions. Rev Mod Phys 75: 281–324

    Article  CAS  Google Scholar 

  23. Bajcsy M, Hofferberth S, Peyronel T, Balic V, Liang Q, Zibrov AS, Vuletic V, Lukin MD (2011) Laser-cooled atoms inside a hollow-core photonic-crystal fiber. Phys Rev A 83:063,830–063,838

    Article  Google Scholar 

  24. Ung B, Sheng Y (2007) Interference of surface waves in a metallic nanoslit. Opt Express 15:1182

    Article  Google Scholar 

  25. Schmidt MA, Russell PS (2008) Long-range spiralling surface plasmon modes on metallic nanowires. Opt Express 16: 13,617

    Article  CAS  Google Scholar 

  26. Afshar SV, Monro TM (2009) A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity. Opt Express 17:2298–2318

    Article  Google Scholar 

  27. Marini A, Hartley R, Gorbach AV, Skryabin DV (2011) Surface-induced nonlinearity enhancement in subwavelength rod waveguides. Phys Rev A 84:063,839

    Article  Google Scholar 

  28. Agrawal GP (2001) Nonlinear fiber optics. Academic

  29. Fitrakis EP, Kamalakis T, Sphicopoulos T (2010) Slow-light dark solitons in insulator-insulator-metal plasmonic waveguides. J Opt Soc Am B 27:1701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Ahmadi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M., Ahmadi, V. & Ebnali-Heidari, M. Dark Plasmon-Solitons in Plasmonic Photonic Crystal Fiber Induced by Thermo-Modulational Nonlinearity of Metal. Plasmonics 11, 895–901 (2016). https://doi.org/10.1007/s11468-015-0123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0123-z

Keywords

Navigation