Skip to main content
Log in

Investigation of Second Harmonic Generation in Asymmetric Metal-Insulator-Metal Plasmonic Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, the second harmonic generation in metal-insulator-metal (MIM) plasmonic waveguides was investigated for both symmetric and asymmetric structures. Nonlinear processes such as second harmonic generation (SHG) are important for applications such as switching and wavelength conversion. In this study, it was shown that field enhancement in asymmetric metal-insulator-metal waveguides can result in large enhancement of SHG. Thus, a structure consisting of a MIM waveguide filled with lithium niobate and sandwiched between two same metals was first considered in this study. Thereafter, two different metals on both sides of the waveguide were used. It was shown in this study that this asymmetric device results in more than two orders of magnitude enhancement in SHG compared to a uniform slab of lithium niobate. For such structures, the field enhancement is due to the squeezing of the optical power from the wavelength-sized dielectric waveguide to the deep sub-wavelength MIM waveguide. So, the novelty of this paper is proposing a metal-LiNbO3-metal nanostructure with different top and bottom metals as plasmonic waveguides. Two different metals, gold and silver, are used as the metals of plasmonic waveguides, and the SHG is investigated in different structures. The interaction between interfering surface plasmonic polariton modes is studied. It is found that compared to the conventional symmetric metal-insulator-metal plasmonic waveguides, the asymmetric structure with different metals, silver-LiNbO3-gold, has higher SHG and longer propagation distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sorger V, Oulton R, Ma R, Zhang X (2012) MRS Bull 37:728

    Article  CAS  Google Scholar 

  2. Qasymeh M (2014) IEEE J Quantum Electron 50:327

    Article  CAS  Google Scholar 

  3. Park J, Kim KY, Lee I, Lee B (2015) J Korean Phys Soc 66:929

    Article  CAS  Google Scholar 

  4. Lee DJ, Yim HD, Kim YG, Jeong YB, Kim TY, Hwangbo CK, Jun YC, Park SG, Lee SG, Hoan O (2013) J Korean Phys Soc 63:2098

    Article  CAS  Google Scholar 

  5. Wang YJ, Cai W, Yang M, Liu Z, Shang G (2015) J Korean Phys Soc 66:261

    Article  CAS  Google Scholar 

  6. Ozbay E (2006) Science 311:189

    Article  CAS  Google Scholar 

  7. Pleros N, Kriezis E, Vyrsokinos K (2011) Photonics J IEEE 3:296

    Article  Google Scholar 

  8. Gagnon D, Balram K, White J, Wahl P, Brongersma M, Miller D (2012) Nanophotonics 1:9

    Google Scholar 

  9. Goto T, Katagiri Y, Fukuda H, Shinojima H, Nakano Y, Kobayashi I, Mitsuoka Y (2004) Appl Phys Lett 84:852

    Article  CAS  Google Scholar 

  10. Charbonneau R, Lahoud N, Mattiussi G, Berini P (2005) Opt Express 13:977

    Article  Google Scholar 

  11. Dionne J, Sweatlock L, Atwater H, Polman A (2006) Phys Rev B 73:035407

    Article  Google Scholar 

  12. Zia R, Selker M, Catrysse P, Brongersma M (2004) JOSA A 21:2442

    Article  Google Scholar 

  13. Miyazaki H, Kurokawa Y (2006) Phys Rev Lett 96:097401

    Article  Google Scholar 

  14. Kurokawaand Y, Miyazaki H (2007) Phys Rev B 75:035411

    Article  Google Scholar 

  15. Veronis G, Fan S (2005) Appl Phys Lett 87:131102

    Article  Google Scholar 

  16. Boyd R (2003) Nonlinear optics. Academic Press

  17. Cazzanelli M, Bianco F, Borga E, Pucker G, Ghulinyan M, Degoli E, Luppi E, Véniard V, Ossicini S, Modotto D (2012) Nat Mater 11:148

    Article  CAS  Google Scholar 

  18. Levy J, Foster M, Gaeta A, Lipson M (2011) Opt Express 19:11415

    Article  CAS  Google Scholar 

  19. Oliveira R, Lipson M, Matos C (2012) Presented at the CLEO: Science and Innovations (unpublished)

  20. Brongersma M, Kik P (2007) Surface plasmonnanophotonics. Springer

  21. Stockman M (2011) Opt Express 19:22029

    Article  Google Scholar 

  22. Hasan S, Rockstuhl C, Pertsch T, Lederer F (2012) JOSA B 29:1606

    Article  Google Scholar 

  23. Chen F (1969) J Appl Phys 40:3389

    Article  CAS  Google Scholar 

  24. Yariv A (1978) IEEE J Quantum Electron 14(9):650

    Article  Google Scholar 

  25. Günter P (1982) Phys Rep 93:199

    Article  Google Scholar 

  26. Dittrich P, Montemezzani G, Bernasconi P, Günter P (1999) Opt Lett 24:1508

    Article  CAS  Google Scholar 

  27. Marrakchi A, Huignard J, Günter P (1981) Appl Phys 24:131

    Article  CAS  Google Scholar 

  28. Economou E (1969) Phys Rev 182:539

    Article  Google Scholar 

  29. Prade B, Vinet JY, Mysyrowicz A (1991) Phys Rev B 44:13556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Soltani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Nikoufard, M. & Dousti, M. Investigation of Second Harmonic Generation in Asymmetric Metal-Insulator-Metal Plasmonic Waveguides. Plasmonics 11, 689–695 (2016). https://doi.org/10.1007/s11468-015-0093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0093-1

Keywords

Navigation