Skip to main content
Log in

Surface Plasmon-Enhanced Nano-photodetector for Green Light Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Light manipulation is vitally important for one-dimensional semiconductor nanostructure-based photodetectors which have great potential in future optoelectronic circuits, imaging technique, and light-wave communication. In this paper, we reported a plasmonic gold nanoparticle (AuNP)-decorated nano-photodetector for green light sensing. It is found that the as-fabricated device exhibits obvious increase in light absorption in the range from 400 to 550 nm, after functionalization of plasmonic AuNPs. Further device performance analysis reveals that the photocurrent of the plasmonic photodetector was increased by more than sevenfold, compared with that without coating. What is more, both responsivity and detectivity are found to increase as well. According to theoretical simulation based on the finite element method (FEM), the observed enhancement in device performance can be attributed to the surface plasmon-induced direct electron injection from the metal nanoparticles to the semiconductor nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  2. Nydberg C, Liedberg B, Lind T (1982) Gas detection by means of surface plasmon resonance. Sensors Actuators 3(1):79–88

    Google Scholar 

  3. Liedberg B, Nylander C, Lundstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4(2):299–304

    Article  CAS  Google Scholar 

  4. Cottat M et al (2013) Localized surface plasmon resonance (LSPR) biosensor for the protein detection. Plasmonics 8:699–704

    Article  CAS  Google Scholar 

  5. Sepulveda B et al (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251

    Article  CAS  Google Scholar 

  6. Luo LB et al (2014) Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci Rep 4:3914

    Google Scholar 

  7. Beck FJ, Lasanta T, Konstantatos G (2014) Plasmonic Schottky nanojunctions for tailoring the photogeneration profile in thin film solar cells. Adv Opt Mater 2(5):493–500

    Article  CAS  Google Scholar 

  8. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  9. Tan HR et al (2012) Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett 12(8):4070–4076

    Article  CAS  Google Scholar 

  10. Xie C et al (2014) Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors. ACS Nano 8(4):4015–4022

    Article  CAS  Google Scholar 

  11. Okamoto K et al (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3(9):601–605

    Article  CAS  Google Scholar 

  12. Kock A et al (1990) Strongly directional emission from AlGaAs/GaAs light-emitting diodes. Appl Phys Lett 57(22):2327

    Article  Google Scholar 

  13. Berini P (2014) Surface plasmon photodetectors and their applications. Laser Photonics Rev 8(2):197–220

    Article  CAS  Google Scholar 

  14. Luo LB et al (2014) The effect of plasmonic nanoparticles on the optoelectronic characteristics of CdTe nanowires. Small 10(13):2645–2652

    Article  CAS  Google Scholar 

  15. Miao JS et al (2015) High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8):936–942

    Article  CAS  Google Scholar 

  16. Oulton RF et al (2010) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  Google Scholar 

  17. Gao X et al (2013) Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl Phys Lett 102(15):151912

    Article  Google Scholar 

  18. Tsuboi A, Nakamura K, Kobayashi N (2013) A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Adv Mater 25(23):3197–3201

    Article  CAS  Google Scholar 

  19. Feng ZY et al (2014) Widely adjustable and quasi-reversible electrochromic device based on core-shell Au-Ag plasmonic nanoparticles. Adv Opt Mater 2(12):11741180

    Google Scholar 

  20. Xiong YJ et al (2012) Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices. Nanoscale 4(15):4416–4420

    Article  CAS  Google Scholar 

  21. Jie JS et al (2010) One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5(4):313–336

    Article  CAS  Google Scholar 

  22. Zeng LH et al (2013) Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl Mater Interfaces 5(19):9362–9366

    Article  CAS  Google Scholar 

  23. Wu W, Bonakdar A, Mohseni H (2010) Plasmonic enhanced quantum well infrared photodetector with high detectivity. Appl Phys Lett 96(16):161107

    Article  Google Scholar 

  24. Cao YL et al (2011) Single-crystalline ZnTe nanowires for application as high-performance green/ultraviolet photodetector. Opt Express 19(7):6100–6108

    Article  CAS  Google Scholar 

  25. Wu D et al (2012) Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons. J Mater Chem 22(13):6206–6212

    Article  CAS  Google Scholar 

  26. Lu JF et al (2015) Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 7(8):3396–3403

    Article  CAS  Google Scholar 

  27. Lou Z et al (2015) High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Res 8(7):2162–2169

    Article  CAS  Google Scholar 

  28. Li L et al (2010) Ultrahigh-performance solar-blind photodetector based on individual single-crystalline In2Ge2O7 nanobelts. Adv Mater 22(45):5145–5149

    Article  CAS  Google Scholar 

  29. Luo LB et al (2015) p-type ZnTe:Ga nanowires: controlled doping and optoelectronic device application. RSC Adv 5(18):13324–13330

    Article  CAS  Google Scholar 

  30. Luo LB et al (2014) Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 9:112–120

    Article  CAS  Google Scholar 

  31. Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  32. Zhang Q et al (2011) A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew Chem Int Ed 50(31):7088–7092

    Article  CAS  Google Scholar 

  33. Han N et al (2013) Tunable electronic transport properties of metal-cluster-decorated III-V nanowire transistors. Adv Mater 25(32):4445–4451

    Article  CAS  Google Scholar 

  34. Nie B et al (2013) Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 9(17):2872–2789

    Article  CAS  Google Scholar 

  35. Wang MZ et al (2013) TiO2 nanotube array/monolayer graphene film Schottky junction ultraviolet light photodetectors. Part Part Syst Charact 30(7):630–636

    Article  CAS  Google Scholar 

  36. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10(12):911–921

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (NSFC, 21101051, 21501038, and 61575059), the Fundamental Research Funds for the Central Universities (2012HGCX0003, 2013HGCH0012, 2014HGCH0005), the China Postdoctoral Science Foundation (103471013), and the Natural Science Foundation of Anhui Province (Grant no. J2014AKZR0036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Bao Luo or Feng-Xia Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, LB., Zheng, K., Ge, CW. et al. Surface Plasmon-Enhanced Nano-photodetector for Green Light Detection. Plasmonics 11, 619–625 (2016). https://doi.org/10.1007/s11468-015-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0091-3

Keywords

Navigation