Skip to main content
Log in

Exploiting Edge Effect to Control Generation Rate and Breakdown Voltage in Graphene Nanoribbon Field Effect Transistors

  • Published:
Plasmonics Aims and scope Submit manuscript

An Erratum to this article was published on 26 December 2015

Abstract

Based on the influence of edge effect and channel shape, two new graphene nanoribbon field effect transistors are presented being useful in high-voltage and highly sensitive optical applications. We fabricated and examined our devices under different conditions. It is seen that by choosing the proper channel shape, ionization rate and breakdown voltage could be improved compared to a normal rectangular device. We report nearly 11 and 19 % improvements in breakdown voltage and ionization rate of graphene nanoribbon field effect transistors (GNRFET), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Geim AK, Nonselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  3. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605–615

    Article  CAS  Google Scholar 

  4. Dragoman DDM (2008) Graphene-based quantum electronics. Prog Quantum Electron 33:165–241

    Article  Google Scholar 

  5. Saeidmanesh M, Ghadiry MH, Khaledian M, Kiani MJ, Ismail R (2014) Carrier scattering and impact ionization in bilayer graphene. J Comput Electron 13:180–185

    Article  CAS  Google Scholar 

  6. Rahmani M, Ismail R, Ahmadi MT, Ghadiry MH (2014) Quantum confinement effect on trilayer graphene nanoribbon carrier concentration. J Exp Nanosci 9:51–63

    Article  CAS  Google Scholar 

  7. Abadi HKF, Ahmadi MT, Yusof R, Saeidmanesh M, Rahmani M, Kiani MJ et al (2014) Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci Adv Mater 6:513–519

    Article  CAS  Google Scholar 

  8. Ahmadi MT, Rahmani M, Ghadiry M, Ismail R (2012) Monolayer graphene nanoribbon homojunction characteristics. Sci Adv Mater 4:753–756

    Article  CAS  Google Scholar 

  9. Ghadiry M, Ismail R, Naraghi B, Taheri Abed S, Kavosi D, Fotovatikhah F (2015) A new approach to model sensitivity of graphene-based gas sensors. Semicond Sci Technol 30(4):045012. doi:10.1088/0268-1242/30/4/045012

  10. Ghadiry M, Nadi M, Mohammadi H, Bin Abd Manaf A (2012) Analysis of a novel full adder designed for implementing in carbon nanotube technology. J Circ Syst Comput 21(5):1250042

  11. Ghadiry MH, Abd Manaf A, Ahmadi MT, Sadeghi H, Senejani MN (2011) Design and analysis of a new carbon nanotube full adder cell. J Nanomater 2011:36. doi:10.1155/2011/906237

  12. Ghadiry MH, Manaf AA, Mousavi SM, Sadeghi H (2011) Study the effect of applied voltage on propagation delay of bilayer graphene nanoribbon transistor. In: 2011 International Semiconductor Device Research Symposium, ISDRS 2011

  13. Rahmani M, Ahmadi MT, Ghadiry MH, Samadi J, Anwar S, Ismail R (2012) The effect of applied voltage on the carrier effective mass in ABA trilayer graphene nanoribbon. J Comput Theor Nanosci 9:1618–1621

    Article  CAS  Google Scholar 

  14. Rahmani M, Ahmadi MT, Ismail R, Ghadiry MH (2013) Performance of bilayer graphene nanoribbon schottky diode in comparison with conventional diodes. J Comput Theor Nanosci 10:323–327

    Article  CAS  Google Scholar 

  15. Taji S, Karimi A, Ghadiry M, Fotovatikhah F (2015) An analytical approach to calculate power and delay of carbon-based links in on-chip networks. J Comput Theor Nanosci 12:1775–1779

    Article  CAS  Google Scholar 

  16. Zhao P, Choudhury M, Mohanram K, Guo J (2008) Computational model of edge effects in graphene nanoribbon transistors. Nano Res 1:395–402

    Article  CAS  Google Scholar 

  17. Basu MJGD, Register LF, Banerjee SK, MacDonald AH (2008) Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors. Appl Phys Lett 92:042114

    Article  Google Scholar 

  18. Youngki Yoon JG (2007) Effect of edge roughness in graphene nanoribbon transistors. Appl Phys Lett 91:073103

    Article  Google Scholar 

  19. Park W-D, Tanioka K (2014) Avalanche multiplication and impact ionization in amorphous selenium. Jpn J Appl Phys 53:1347–4065

    Google Scholar 

  20. Ghadiry M, Nadi M, Saiedmanesh M, Abadi HKF (2014) An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistors. J Comput Theor Nanosci 11:339–343

    Article  CAS  Google Scholar 

  21. Ghadiry M, Ismail R, Saeidmanesh M, Khaledian M, Manaf AA (2014) Graphene nanoribbon field-effect transistor at high bias. Nanoscale Res Lett 9:1–5

    Article  CAS  Google Scholar 

  22. Pirro L, Girdhar A, Leblebici Y, Leburton J-P (2012) Impact ionization and carrier multiplication in graphene. J Appl Phys 112(9):093707

  23. Ghadiry M, Manaf ABA, Nadi M, Rahmani M, Ahmadi MT (2012) Theory of ionization mechanism in graphene nanoribbons. J Comput Theor Nanosci 9:2190–2192

    Article  CAS  Google Scholar 

  24. Ghadiry M, Manaf ABA, Nadi M, Rahmani M, Ahmadi MT (2012) Ionization coefficient of monolayer graphene nanoribbon. Microelectron Reliab 52:1396–1400

    Article  CAS  Google Scholar 

  25. Liao AD, Wu JZ, Wang X, Tahy K, Jena D, Dai H et al (2011) Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett 106:256801

    Article  Google Scholar 

  26. Lee K-J, Chandrakasan A, Kong J (2011) Breakdown current density of cvd-grown multilayer graphene interconnects. IEEE Electron Device Lett 32(4):557–559

  27. Hertel S, Kisslinger F, Jobst J, Waldmann D, Krieger M, Weber HB (2011) Current annealing and electrical breakdown of epitaxial graphene. Appl Phys Lett 98:212109

    Article  Google Scholar 

  28. Girdhar A, Leburton JP (2011) Soft carrier multiplication by hot electrons in graphene. Appl Phys Lett 99:043107

    Article  Google Scholar 

  29. Ghadiry MH, Nadi S M, Ahmadi MT, Manaf AA (2011) A model for length of saturation velocity region in double-gate graphene nanoribbon transistors. Microelectron Reliab 51:2143–2146

    Article  CAS  Google Scholar 

  30. Fang T, Konar A, Xing H, Jena D (2011) High-field transport in two-dimensional graphene. Phys Rev B 84:125450

    Article  Google Scholar 

  31. Murali R, Yang Y, Brenner K, Beck T, Meindl JD (2009) Breakdown current density of graphene nanoribbons. Appl Phys Lett 94:243114

    Article  Google Scholar 

  32. Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat Nanotechnol 3:654–659. doi:10.1038/nnano.2008.268

    Article  CAS  Google Scholar 

  33. Ghadiry M, Nadi M, Bahadorian M, Manaf AA, Karimi H, Sadeghi H (2013) An analytical approach to calculate effective channel length in graphene nanoribbon field effect transistors. Microelectron Reliab 53:540–543

    Article  CAS  Google Scholar 

  34. Ghadiry M, Nadi M, Rahmani M, Ahmadi M, Mahaf AA (2012) Modelling and simulation of saturation region in double gate graphene nanoribbon transistors. Semiconductors J 46(1):126–129

  35. Rubel O, Potvin A, Laughton D (2011) Generalized lucky-drift model for impact ionization in semiconductors with disorder. J Phys Condens Matter 23(5):055802

  36. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdiar Ghadiry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiry, M., Ahmad, H., Hivechi, A. et al. Exploiting Edge Effect to Control Generation Rate and Breakdown Voltage in Graphene Nanoribbon Field Effect Transistors. Plasmonics 11, 573–577 (2016). https://doi.org/10.1007/s11468-015-0073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0073-5

Keywords

Navigation