Skip to main content
Log in

Ultrabroadband Mid-infrared Light Absorption Based on a Multi-cavity Plasmonic Metamaterial Array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a broadband plasmonic metamaterial absorber in the infrared region based on localized surface plasmon polaritons (LSPPs). The unit cell of the proposed metamaterial absorber consists of a multi-cavity structure, in which absorption resonances can be tuned independently through the modification of the width and shift of metallic walls. In order to avoid the degeneration between two contiguous resonances, which dramatically reduces the bandwidth, we introduce a zigzag design rule to arrange the cavities within a compact unit. Thus, the possible number of resonances is greatly increased, enabling an ultrabroadband absorption. A broadband absorber is demonstrated with only a few-layer structure and it also has an incident-angle-insensitive feature. Our results have potential applications in photovoltaic devices, emitters, sensors, and camouflage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Sci: 290

  2. O’Brien K, Suchowski H, Rho J, Salandrino A, Kante B, Yin X, Zhang X (2015) Predicting nonlinear properties of metamaterials from the linear response. Nat Mater 14(4):379–383

    Article  Google Scholar 

  3. Ross MB, Blaber MG, Schatz GC (2014) Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nature Commun 5. doi:10.1038/ncomms5090

  4. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  5. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  Google Scholar 

  6. Hao JM, Wang J, Liu XL, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104

    Article  Google Scholar 

  7. Li W, Valentine J (2014) Metamaterial perfect absorber based hot electron photodetection. Nano Lett 14(6):3510–3514

    Article  CAS  Google Scholar 

  8. Liu XL, Starr T, Starr AF, Padilla WJ (2010) Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett 104(20):207403

    Article  Google Scholar 

  9. Mason JA, Smith S, Wasserman D (2011) Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl Phys Lett 98(24):241105

    Article  Google Scholar 

  10. Wang Y, Sun TY, Paudel T, Zhang Y, Ren ZF, Kempa K (2012) Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett 12(1):440–445

    Article  Google Scholar 

  11. Jamali AA, Witzigmann B (2014) Plasmonic perfect absorbers for biosensing applications. Plasmonics 9(6):1265–1270

    Article  CAS  Google Scholar 

  12. Koechlin C, Bouchon P, Pardo F, Pelouard JL, Haidar R (2013) Analytical description of subwavelength plasmonic MIM resonators and of their combination. Opt Express 21(6):7025–7032

    Article  Google Scholar 

  13. Gong Y, Li Z, Fu J, Chen Y, Wang G, Lu H, Wang L, Liu X (2011) Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. Opt Express 19(11):10193–10198

    Article  CAS  Google Scholar 

  14. Bouchon P, Koechlin C, Pardo F, Haidar R, Pelouard JL (2012) Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt Lett 37(6):1038–1040

    Article  CAS  Google Scholar 

  15. Cheng C-W, Abbas MN, Chao-Wei Chiu K-TL, Shih M-H, Chang Y-C (2012) Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt Express 20(9):10376

    Article  CAS  Google Scholar 

  16. Cui YX, Xu J, Fung KH, Jin Y, Kumar A, He SL, Fang NX (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99(25):253101

    Article  Google Scholar 

  17. Hendrickson J, Guo JP, Zhang BY, Buchwald W, Soref R (2012) Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt Lett 37(3):371–373

    Article  Google Scholar 

  18. Koechlin C, Bouchon P, Pardo F, Jaeck J, Lafosse X, Pelouard JL, Haidar R (2011) Total routing and absorption of photons in dual color plasmonic antennas. Appl Phys Lett 99(24):241104

    Article  Google Scholar 

  19. Le Perchec J, Desieres Y, Rochat N, de Lamaestre RE (2012) Subwavelength optical absorber with an integrated photon sorter. Appl Phys Lett 100(11):113305

    Article  Google Scholar 

  20. Wu CH, Shvets G (2012) Design of metamaterial surfaces with broadband absorbance. Opt Lett 37(3):308–310

    Article  Google Scholar 

  21. Cao S, Yu W, Wang T, Xu Z, Wang C, Fu Y, Liu Y (2013) Two-dimensional subwavelength meta-nanopillar array for efficient visible light absorption. Appl Phys Lett 102(16):161109

    Article  Google Scholar 

  22. Cui YX, Fung KH, Xu J, Ma HJ, Jin Y, He SL, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12(3):1443–1447

    Article  CAS  Google Scholar 

  23. Ding F, Cui YX, Ge XC, Jin Y, He SL (2012) Ultra-broadband microwave metamaterial absorber. Appl Phys Lett 100(10):103506

    Article  Google Scholar 

  24. Grant J, Ma Y, Saha S, Khalid A, Cumming DRS (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett 36(17):3476–3478

    Article  CAS  Google Scholar 

  25. Lobet M, Lard M, Sarrazin M, Deparis O, Henrard L (2014) Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption. Opt Express 22(10):12678–12690

    Article  CAS  Google Scholar 

  26. Zhang N, Zhou PH, Cheng DM, Weng XL, Xie JL, Deng LJ (2013) Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Opt Lett 38(7):1125–1127

    Article  CAS  Google Scholar 

  27. Guo Y, Yan L, Pan W, Luo B, Luo X (2014) Ultra-broadband terahertz absorbers based on 4× 4 cascaded metal-dielectric pairs. Plasmonics 9(4):951–957

    Article  CAS  Google Scholar 

  28. Bossard JA, Lin L, Yun S, Liu L, Werner DH, Mayer TS (2014) Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8(2):1517–1524

    Article  CAS  Google Scholar 

  29. Dai S, Zhao D, Li Q, Qiu M (2013) Double-sided polarization-independent plasmonic absorber at near-infrared region. Opt Express 21(11):13125–13133

    Article  Google Scholar 

  30. Hubarevich A, Kukhta A, Demir HV, Sun X, Wang H (2015) Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Opt Express 23(8):9753

    Article  Google Scholar 

  31. ED Palik (1991) Handbook of optical constants of solids academic

  32. Wang LP, Zhang ZM (2011) Phonon-mediated magnetic polaritons in the infrared region. Opt Express 19(6):A126–A135

    Article  CAS  Google Scholar 

  33. Feng R, Ding WQ, Liu LH, Chen LX, Qiu J, Chen GQ (2014) Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array. Opt Express 22(5):A335–A343

    Article  Google Scholar 

  34. Wang H, Yang Y, Wang LP (2014) Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer. Appl Phys Lett 105(7):071907

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Natesan Yogesh for carefully reading through this article and good suggestions. This work was supported by the Chinese Natural Science Foundation (Grant Nos. 61107049, 61275043), the Open Fund of Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology (Grant No. MN201112, Grant No. 201406), Shenzhen Kexin Ju funds (Grant No. JCYJ20140828163633988), and the Natural Science Foundation of SZU (Grant No. 201456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyu Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Tao, K. & Wang, Q. Ultrabroadband Mid-infrared Light Absorption Based on a Multi-cavity Plasmonic Metamaterial Array. Plasmonics 11, 389–394 (2016). https://doi.org/10.1007/s11468-015-0062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0062-8

Keywords

Navigation