Skip to main content
Log in

Numerical Simulation of Broadband Scattering by Coated and Noncoated Metal Nanostructures Using Discrete Dipole Approximation Method

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We suggest numerical method to study the optical response of metal nanostructures. The analysis of optical properties such as scattering and absorption by coated and noncoated nanogeometry has been done using discrete dipole approximation (DDA) method. The core-shell nanogeometry supports surface plasmon resonances, which are highly tunable from 400 to 1100 nm. The tunability of surface plasmon resonance (SPR) highly depends on the structural anisotropy and chosen core-shell material. Further, we have observed that aspect ratio is one of the key parameter to decide the nature and position of the plasmonic peaks and magnitude of optical cross section. We have also shown that coated nanospheroid is a more appropriate geometry as compared to coated nanosphere and noncoated nanospheroid in terms of wide tunability of surface plasmon resonance. The wide tunability in SPR is observed for the effective radii 90 nm core-shell (Au@SiO2) nanospheroid with aspect ratio 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maier S (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824–830

    Article  CAS  Google Scholar 

  4. Spinelli P et al (2012) J Opt 14:024002

    Article  Google Scholar 

  5. Kelly KL, Coronado E, Zhao LL, Schatz GJ (2003) Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  6. Bohren CF (1983) Am J Phys 51:323–327

    Article  CAS  Google Scholar 

  7. Brongersma ML, Kik PG (1988) Surface plasmon nanophotonics. Springer, Berlin

    Google Scholar 

  8. Garcia MA (2011) J Phys D Appl Phys 44:283001

    Article  Google Scholar 

  9. Cecilia N (2007) J Phys Chem C 111:3806–3819

    Article  Google Scholar 

  10. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  11. Ji A, Sangita, Sharma RP (2012) J Phys D Appl Phys 45:275101

    Article  Google Scholar 

  12. Pillai S, Catchpole KR, Trupke T, Green MA (2007) J Appl Phys 101:093105

    Article  Google Scholar 

  13. Vincenzo A, Bakr OM, Francesco S (2010) Plasmonics 5:85–97

    Article  Google Scholar 

  14. Ji A, Kumari A, Pathak NK, Sharma RP (2014) Plasmonics 9:291–297

    Article  CAS  Google Scholar 

  15. Pathak NK, Ji A, Sharma RP (2014) Plasmonics 9:651–657

    Article  CAS  Google Scholar 

  16. Oldenberg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Chem Phys Lett 288:243–247

    Article  Google Scholar 

  17. Li J et al (2013) ACS Catal 3:47–51

    Article  CAS  Google Scholar 

  18. Brown MD et al (2011) Nano Lett 11:438–445

    Article  CAS  Google Scholar 

  19. Ng S-P et al (2014) Sol Energy 99:115–125

    Article  CAS  Google Scholar 

  20. Qi J, Dang X, Hammond PT, Belcher AM (2011) ACS Nano 5:7108–7116

    Article  CAS  Google Scholar 

  21. Sheehan SW, Noh H, Brudvig GW, Cao H, Schmuttenmaer CA (2013) J Phys Chem C 117:927–934

    Article  CAS  Google Scholar 

  22. Chen J-J, Wu JCS, Wu PC, Tsai DP (2012) J Phys Chem C 116:26535–26542

    Article  CAS  Google Scholar 

  23. Wang F (2011) Nat Mater 10:968–973

    Article  CAS  Google Scholar 

  24. Hirakawa T, Kamat PV (2005) J Am Chem Soc 127:3928–3934

    Article  CAS  Google Scholar 

  25. Qi Y et al (2008) Appl Surf Sci 254:1684–1690

    Article  CAS  Google Scholar 

  26. Qi Y et al (2007) Colloids Surf A: Physicochem Eng Aspects 302:383–387

    Article  CAS  Google Scholar 

  27. Liz-Marzan LM, Giersig M, Mulvaney P (1996) Langmuir 12:4329–4335

    Article  CAS  Google Scholar 

  28. Poovarodom S, Bass JD, Hwang SJ, Katz A (2005) Langmuir 21:12348–12356

    Article  CAS  Google Scholar 

  29. Li T et al (1999) Langmuir 15:4328–4334

    Article  CAS  Google Scholar 

  30. Ung T, Liz-Marzan LM, Mulvaney P (1998) Langmuir 14:3740–3748

    Article  CAS  Google Scholar 

  31. Zhao L, Kelly KL, Schatz GC (2003) J Phys Chem B 107:7343–7350

    Article  CAS  Google Scholar 

  32. Hao E, Schatz GC (2004) J Phys Chem B 120:357–366

    Article  CAS  Google Scholar 

  33. Vial A, Grimault AS, Macías D, Barchiesi D, Lamy de la Chapelle M (2005) Phys Rev B 71(8):085416

    Article  Google Scholar 

  34. Ladanov M, Cheemalapati S, Pyayt A (2013) Opt Express 21:28001–28009

    Article  Google Scholar 

  35. Luo L et al (2015) Opt Express 23:12979–12988

    Article  Google Scholar 

  36. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  37. Draine BT, Flatau PJ (1994) J Opt Soc Am

  38. Draine BT, Flatau PJ. User guide to the discrete dipole approximation code DDSCAT 7.3, available at http://arxiv.org/abs/1202.3424

  39. Pathak H, Ji A, Sharma R, Sharma RP DOI 10.1007/s11468-014-9865-2.

  40. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  41. Draine BT, Flatau PJ (2008) J Opt Soc Am 25:2693

    Article  Google Scholar 

  42. Draine BT, Flatau PJ (2012) Opt Express 20:1247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangita Roopak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roopak, S., Pathak, N.K., Ji, A. et al. Numerical Simulation of Broadband Scattering by Coated and Noncoated Metal Nanostructures Using Discrete Dipole Approximation Method. Plasmonics 11, 425–432 (2016). https://doi.org/10.1007/s11468-015-0052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0052-x

Keywords

Navigation