Skip to main content
Log in

Ultra-Compact On-chip Electro-Optic Waveguide Ring Resonators Based on Asymmetric Au-(Pb, La)(Zr, Ti)O3-Au Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Waveguide ring resonators (WRRs) operating at a telecom window of 1.4∼1.6 μm based on asymmetric Au-(Pb, La)(Zr, Ti)O3-Au structure is proposed and investigated. Electro-optical control of such WRRs is conducted by introducing epitaxial (Pb, La)(Zr, Ti)O3 (PLZT) thin films as the core layer deposited between the upper and lower gold slabs with different widths. The long-term reliability, large electro-optic (EO) coefficients, and spontaneous polarization properties of PLZT thin films have ensured high performance of our WRRs. It has been demonstrated that the footprint of WRR can be fabricated less than 20 μm2 with the radius of ring resonator around 1 μm through combining PLZT thin films with surface plasmons (SPs). Furthermore, the large extinction ratio (∼43 dB), as well as comparatively low insertion loss (<10.5 dB), and moderate modulation sensitivity (0.8 nm/V) can be achieved with proposed WRRs in the wavelength range of 1.4∼1.6 μm. Besides, the strong mode confinement capacity of such asymmetric metal-insulator-metal (MIM) structure can support high bending waveguides, paving the way for the fabrication of more compact electro-optic WRRs with nanometer-scale radius that can work in the other wavelength ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmon. Springer, Berlin

    Google Scholar 

  2. Takahara J, Yamagishi S, Taki H, Morimoto A, Kobayashi T (1997) Guiding of a one-dimensional optical beam with nanometer diameter. Opt Lett 22:475–477

    Article  CAS  Google Scholar 

  3. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  4. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  5. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  6. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27

    Article  CAS  Google Scholar 

  7. Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett 9:897–902

    Article  CAS  Google Scholar 

  8. Krasavin AV, Zayats AV (2010) Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 97:041107

    Article  CAS  Google Scholar 

  9. Zhu S, Lo GQ, Kwong DL (2013) Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator. Opt Express 21:12699–12712

    Article  CAS  Google Scholar 

  10. Randhawa S, Lachèze S, Renger J, Bouhelier A, de Lamaestre RE, Dereux A, Quidant R (2012) Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Opt Express 20:2354–2362

    Article  Google Scholar 

  11. Xu M, Li F, Wang T, Wu J, Lu L, Zhou L, Su Y (2013) Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter. J Lightwave Technol 31:1170–1177

    Article  Google Scholar 

  12. Zhang J, Shi L, Wang Y, Cassan Y, Zhang X (2014) On-chip high-speed optical detection based on an optical rectification scheme in silicon plasmonic platform. Opt Express 22:27504–27514

    Article  CAS  Google Scholar 

  13. Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J, Palmer R, Korn D, Muehlbrandt S, Thourhout DV, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J (2014) High-speed plasmonic phase modulators. Nat Photonics 8:229–233

    Article  CAS  Google Scholar 

  14. Wang L, Chen X, Yu A, Zhang Y, Ding J, Lu W (2014) Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors. Sci Rep 4

  15. Bakunov MI, Tsarev MV, Hangyo M (2009) Cherenkov emission of terahertz surface plasmon polaritons from a superluminal optical spot on a structured metal surface. Opt Express 17:9323–9329

    Article  CAS  Google Scholar 

  16. Zografopoulos DC, Beccherelli R (2013) Long-range plasmonic directional coupler switches controlled by nematic liquid crystals. Opt Express 21:8240–8250

    Article  CAS  Google Scholar 

  17. Markov P, Appavoo K, Haglund RF, Weiss SM (2015) Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling. Opt Express 23:6878–6887

    Article  Google Scholar 

  18. Xu Q, Schmidt B, Pradhan S, Lipson M (2005) Micrometre-scale silicon electro-optic modulator. Nature 435:325–327

    Article  CAS  Google Scholar 

  19. Papaioannou S, Vyrsokinos K, Tsilipakos O, Pitilakis A, Hassan K, Weeber J, Markey L, Dereux A, Bozhevolnyi SI, Miliou A, Kriezis EE, Pleros N (2011) A 320 Gb/s-throughput capable 2 × 2 silicon-plasmonic router architecture for optical interconnects. J Lightwave Technol 29:3185–3195

    Article  Google Scholar 

  20. Zhang XY, Hu A, Wen JZ, Zhang T, Xue XJ, Zhou Y, Duley WW (2010) Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides. Opt Express 18:18945–18959

    Article  CAS  Google Scholar 

  21. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7669–7677

    Article  CAS  Google Scholar 

  22. Shacham A, Bergman K, Carloni LP (2008) Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput 57:1246–1260

    Article  Google Scholar 

  23. Nashimoto K, Moriyama H, Nakamura S, Watanabe M, Morikawa T, Osakabe E, Haga K (2001) PLZT electro-optic waveguides and switches. In Optical Fiber Communication Conference: PD10

  24. Nashimoto K (2005) Epitaxial PLZT waveguide technologies for integrated photonics. Proc SPIE 5728:34–43

    Article  CAS  Google Scholar 

  25. Masuda S, Seki A, Shiota K, Masuda Y (2011) Mach–Zehnder interferometer-type photonic switches based on epitaxially grown lanthanum-modified lead zirconate titanate films. J Lightwave Technol 29:209–214

    Article  CAS  Google Scholar 

  26. Jin GH, Zou YK, Fuflyigin V, Liu SW, Lu YL, Zhao J, Cronin-Golomb M (2000) PLZT film waveguide Mach–Zehnder electrooptic modulator. J Lightwave Technol 18:807–812

    Article  Google Scholar 

  27. Yasumoto M, Suzuki T, Tsuda H, Raj M, Kudzuma D, Dawley J, Ritums D, Tanaka Y, Nashimoto K (2007) Fabrication of (Pb, La)(Zr, Ti)O3 thin-film arrayed waveguide grating. Electron Lett 43:24–25

    Article  CAS  Google Scholar 

  28. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Article  CAS  Google Scholar 

  29. Masuda S, Seki A, Shiota K, Hara H, Masuda Y (2011) Electro-optic and dielectric characterization of ferroelectric films for high-speed optical waveguide modulators. J Appl Phys 109:124108

    Article  CAS  Google Scholar 

  30. Adachi H, Mitsuyu T, Yamazaki O, Wasa K (1986) Ferroelectric (Pb, La)(Zr, Ti)O3 epitaxial thin films on sapphire grown by rf-planar magnetron sputtering. J Appl Phys 60:736–741

    Article  CAS  Google Scholar 

  31. Yoon DS, Kim CJ, Lee JS, Lee WJ, No K (1994) Epitaxial growth of sol-gel PLZT thin films. J Mater Res 9:420–425

    Article  CAS  Google Scholar 

  32. Nashimoto K, Haga K, Watanabe M, Nakamura S, Osakabe E (1999) Patterning of (Pb, La)(Zr, Ti)O3 waveguides for fabricating micro-optics using wet etching and solid-phase epitaxy. Appl Phys Lett 75:1054–1056

    Article  CAS  Google Scholar 

  33. Nashimoto K, Nakamura S, Morikawa T, Moriyama H, Watanabe M, Osakabe E (1999) Electrooptical properties of heterostructure (Pb, La)(Zr, Ti)O3 waveguides on Nb–SrTiO3. Jpn J Appl Phys 38:5641

    Article  CAS  Google Scholar 

  34. Joushaghani A, Kruger BA, Paradis S, Alain D, Aitchison JS, Poon JK (2013) Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Appl Phys Lett 102:061101

    Article  CAS  Google Scholar 

  35. Liu A, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M (2004) A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427:615–618

    Article  CAS  Google Scholar 

  36. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  37. Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21:2442–2446

    Article  Google Scholar 

  38. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102

    Article  CAS  Google Scholar 

  39. Yun B, Hu G, Cui Y (2010) Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. J Phys D Appl Phys 43:385102

    Article  CAS  Google Scholar 

  40. Yu Z, Veronis G, Fan S, Brongersma ML (2008) Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl Phys Lett 92:041117

    Article  CAS  Google Scholar 

  41. Yun B, Hu G, Cui Y (2013) Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8:267–275

    Article  CAS  Google Scholar 

  42. Berini P (2006) Figures of merit for surface plasmon waveguides. Opt Express 14:13030–13042

    Article  Google Scholar 

  43. Buckley R, Berini P (2007) Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt Express 15:12174–12182

    Article  CAS  Google Scholar 

  44. Sarid D, Challener W (2010) Modern introduction to surface plasmons: theory, Mathematica modeling, and applications. Cambridge University Press

  45. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  46. Wan R, Liu F, Tang X, Huang Y, Peng J (2009) Vertical coupling between short range surface plasmon polariton mode and dielectric waveguide mode. Appl Phys Lett 94:141104

    Article  CAS  Google Scholar 

  47. Yariv A (2000) Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett 36:321–322

    Article  CAS  Google Scholar 

  48. Zhang F, Lit JW (1988) Direct-coupling single-mode fiber ring resonator. J Opt Soc Am A 5:1347–1355

    Article  Google Scholar 

  49. Little BE, Foresi JS, Steinmeyer G, Thoen ER, Chu ST, Haus HA, Ippen EP, Kimerling LC, Greene W (1998) Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE Photon Technol Lett 10:549–551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Yiping.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhipeng, Q., Guohua, H., Binfeng, Y. et al. Ultra-Compact On-chip Electro-Optic Waveguide Ring Resonators Based on Asymmetric Au-(Pb, La)(Zr, Ti)O3-Au Structure. Plasmonics 11, 297–306 (2016). https://doi.org/10.1007/s11468-015-0048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0048-6

Keywords

Navigation