Skip to main content
Log in

Curved Gratings as Plasmonic Lenses for Linearly Polarised Light

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The ability of curved gratings as sectors of concentric circular gratings to couple linearly polarised light into focused surface plasmons is investigated by theory, simulation, and experiment. The experimental and simulation results show that increasing the sector angle of the curved gratings decreases the width of the lateral distribution of surface plasmons resulting in focusing of surface plasmons, which is analogous to the behaviour of classical optical lenses. We also show that two faced curved gratings, with their groove radius mismatched by half of the plasmon wavelength (asymmetric configuration), can couple linearly polarised light into a single focal spot of concentrated surface plasmons with smaller depth of focus and higher intensity in comparison to single curved gratings. The major advantage of these structures is the coupling of linearly polarised light into focused surface plasmons with access to, and control of, the plasmon focal spot, which facilitate their potential applications in sensing, detection, and nonlinear plasmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications: fundamentals and applications. Springer

  2. Li XF, Yu SF (2010) Extremely high sensitive plasmonic refractive index sensors based on metallic grating. Plasmonics 5(4):389–394. doi:10.1007/s11468-010-9155-6

    Article  Google Scholar 

  3. Dhawan A, Canva M, Vo-Dinh T (2011) Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt Express 19(2):787–813. doi:10.1364/Oe.19.000787

    Article  CAS  Google Scholar 

  4. Wong C, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4):809–824. doi:10.1007/s11468-013-9662-3

    Article  CAS  Google Scholar 

  5. Ishi T, Fujikata J, Makita K, Baba T, Ohashi K (2005) Si nano-photodiode with a surface plasmon antenna. Jpn J Appl Phys Part 2 44(12-15):L364–L366. doi:10.1143/Jjap.44.L364

    Article  CAS  Google Scholar 

  6. Ren FF, Ang KW, Ye JD, Yu MB, Lo GQ, Kwong DL (2011) Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector. Nano Lett 11(3):1289–1293. doi:10.1021/Nl104338z

    Article  CAS  Google Scholar 

  7. Tang L, Kocabas SE, Latif S, Okyay AK, Ly-Gagnon DS, Saraswat KC, Miller DAB (2008) Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photonics 2(4):226–229. doi:10.1038/nphoton.2008.30

    Article  CAS  Google Scholar 

  8. Xu T, Jiao X, Zhang G-P, Blair S (2007) Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement. Opt Express 15(21):13894–13906

    Article  CAS  Google Scholar 

  9. Nahata A, Linke RA, Ishi T, Ohashi K (2003) Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt Lett 28(6):423–425

    Article  Google Scholar 

  10. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6(11):737–748

    Article  CAS  Google Scholar 

  11. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511. doi:10.1038/Nature04594

    Article  CAS  Google Scholar 

  12. Chen Z-x, Wu Z-j, Ming Y, Zhang X-j, Lu Y-q (2014) Hybrid plasmonic waveguide in a metal V-groove. Aip Adv 4 (1). doi:doi:http://dx.doi.org/10.1063/1.4861582

  13. Kumar G, Li SS, Jadidi MM, Murphy TE (2013) Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New J Phys 15. doi:Artn 085031 Doi 10.1088/1367-2630/15/8/085031

  14. Lu J, Petre C, Yablonovitch E, Conway J (2007) Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO2 interface. J Opt Soc Am B 24(9):2268–2272. doi:10.1364/Josab.24.002268

    Article  CAS  Google Scholar 

  15. Tanemura T, Balram KC, Ly-Gagnon DS, Wahl P, White JS, Brongersma ML, Miller DA (2011) Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett 11(7):2693–2698. doi:10.1021/nl200938h

    Article  CAS  Google Scholar 

  16. Gaborit G, Armand D, Coutaz J-L, Nazarov M, Shkurinov A (2009) Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves. Appl Phys Lett 94(23):231108. doi:10.1063/1.3153125

    Article  Google Scholar 

  17. Radko IP, Bozhevolnyi SI, Evlyukhin AB, Boltasseva A (2007) Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt Express 15(11):6576–6582. doi:10.1364/Oe.15.006576

    Article  Google Scholar 

  18. Zhao CL, Wang JY, Wu XF, Zhang JS (2009) Focusing surface plasmons to multiple focal spots with a launching diffraction grating. Appl Phys Lett 94(11). doi:Artn 111105 Doi 10.1063/1.3100195

  19. Drezet A, Stepanov AL, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2005) Surface plasmon propagation in an elliptical corral. Appl Phys Lett 86(7). doi:Artn 074104 Doi 10.1063/1.1870107

  20. Gaborit G, Armand D, Coutaz JL, Nazarov M, Shkurinov A (2009) Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves. Appl Phys Lett 94(23). doi:Artn 231108 Doi 10.1063/1.3153125

  21. Maier SA, Andrews SR, Martín-Moreno L, García-Vidal FJ (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97(17):176805

    Article  Google Scholar 

  22. Liu ZW, Steele JM, Srituravanich W, Pikus Y, Sun CXZ (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5(9):1726–1729. doi:10.1021/Nl051013

    Article  CAS  Google Scholar 

  23. López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3(5):324–328. doi:10.1038/nphys584

    Article  Google Scholar 

  24. Khoo EH, Guo Z, Ahmed I, Li EP (2012) Near-field switching and focusing using plasmonic nanostructures with different polarizations. Proc SPIE 8457:1–8. doi:10.1117/12.929322

    Google Scholar 

  25. Steele JM, Liu ZW, Wang Y, Zhang X (2006) Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt Express 14(12):5664–5670. doi:10.1364/Oe.14.005664

    Article  Google Scholar 

  26. Fu YQ, Liu Y, Zhou XL, Xu ZW, Fang FZ (2010) Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. Opt Express 18(4):3438–3443

    Article  Google Scholar 

  27. Chen WB, Abeysinghe DC, Nelson RL, Zhan QW (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9(12):4320–4325. doi:10.1021/Nl903145p

    Article  CAS  Google Scholar 

  28. Fang ZY, Peng QA, Song WT, Hao FH, Wang J, Nordlander P, Zhu X (2011) Plasmonic focusing in symmetry broken nanocorrals. Nano Lett 11(2):893–897. doi:10.1021/Nl104333n

    Article  CAS  Google Scholar 

  29. Gjonaj B, David A, Blau Y, Spektor G, Orenstein M, Dolev S, Bartal G (2014) Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space. Nano Lett 14(10):5598–5602. doi:10.1021/Nl502080n

    Article  CAS  Google Scholar 

  30. Martin PJ, Sainty WG, Netterfield RP (1984) Enhanced gold film bonding by ion-assisted deposition. Appl Opt 23(16):2668–2669

    Article  CAS  Google Scholar 

  31. Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett 9(5):2139–2143. doi:10.1021/Nl900694r

    Article  CAS  Google Scholar 

  32. Koev ST, Agrawal A, Lezec HJ, Aksyuk VA (2012) An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 7(2):269–277. doi:10.1007/s11468-011-9303-7

    Article  CAS  Google Scholar 

  33. Raether H (1988) Surface-plasmons on smooth and rough surfaces and on gratings. Springer Tr Mod Phys 111:1–133

    Article  Google Scholar 

  34. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Australian Research Council Centre of Excellence for Ultra-high bandwidth Devices for Optical Systems (project number CE110001018) and Macquarie University. We also acknowledge CSIRO for the FIB facilities and thank Steven Moody for FIB operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Maleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, A., Vo, T.P., Hautin, A. et al. Curved Gratings as Plasmonic Lenses for Linearly Polarised Light. Plasmonics 11, 365–372 (2016). https://doi.org/10.1007/s11468-015-0031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0031-2

Keywords

Navigation