Skip to main content
Log in

Theoretical Investigation of Loss-Compensating Hybrid Waveguide Using Quasi-One-Dimensional Surface Plasmon for Green Nanolaser

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report the theoretical investigation of an electrically injected plasmonic nanolaser in visible regime. The green nanolaser is based on a hybrid waveguide which employs semiconductor nanowire gain medium to compensate the loss in metallic cavity. Two-dimensional sub-wavelength confinements (mode area about λ 2/100) and net modal gain are simultaneously achieved for quasi-one-dimensional surface plasmon mode supported in such waveguide. The device structure is further optimized for room temperature operation with achievable injected current density about several kilo ampere/square centimetres (kA/cm2). The approach is also beneficial to developing other nanophotonic devices on sub-wavelength scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schawlow AL, Townes CH (1958) Infrared and optical masers. Phys Rev 112:1940

    Article  CAS  Google Scholar 

  2. Jiang HX, Lin JY (2011) Semiconductor lasers: expanding into blue and green. Nat Photonics 5:521–522

    Article  CAS  Google Scholar 

  3. Ning CZ (2010) Semiconductor nanolasers. Phys Status Solidi B 247:774–788

    CAS  Google Scholar 

  4. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  5. Smit M, Tol JVD, Hill M (2012) Moore’s law in photonics. Laser Photonics Rev 6:1–13

    Article  CAS  Google Scholar 

  6. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  7. Hill MT, Oei YS, Smalbrugge B, Zhu Y, Vries TD, Veldhoven PJV, Otten FWMV, Eijkemans TJ, Turkiewicz JP, Waardt HD, Geluk EJ, Kwon SH, Lee YH, Notzel R, Smit MK (2007) Lasing in metallic-coated nanocavities. Nat Photonics 1:589–594

    Article  CAS  Google Scholar 

  8. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  9. Kwon SH, Kang JH, Seassal C, Kim SK, Regreny P, Lee YH, Lieber CM, Park HG (2010) Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett 10:3679–3683

    Article  CAS  Google Scholar 

  10. Wu CY, Kuo CT, Wang CY, He CL, Lin MH, Ahn H, Gwo S (2011) Plasmonic green nanolaser based on a metal–oxide–semiconductor structure. Nano Lett 11:4256–4260

    Article  CAS  Google Scholar 

  11. Khajavikhan M, Simic A, Katz M, Lee JH, Slutsky B, Mizrahi A, Lomakin V, Fainman Y (2012) Thresholdless nanoscale coaxial lasers. Nature 482:204–207

    Article  CAS  Google Scholar 

  12. Lu YJ, Kim J, Chen HY, Wu C, Dabidian N, Sanders CE, Wang CY, Lu MY, Li BH, Qiu X, Chang WH, Chen LJ, Shvets G, Shih CK, Gwo S (2012) Plasmonic nanolaser using epitaxially grown silver film. Science 337:450–453

    Article  CAS  Google Scholar 

  13. Hou Y, Renwick P, Liu B, Bai J, Wang (2014) Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold. Sci Rep 4:5014

    CAS  Google Scholar 

  14. Ding K, Liu ZC, Yin LJ, Hill MT, Marell MJH, Veldhoven PJV, Nöetzel R, Ning CZ (2012) Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys Rev B 85:041301

    Article  CAS  Google Scholar 

  15. Ding K, Hill MT, Liu ZC, Yin LJ, Veldhoven PJV, Ning CZ (2013) Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt Express 21:4728–4733

    Article  CAS  Google Scholar 

  16. Khurgin JB, Sun G (2012) Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium. Appl Phys Lett 100:011105

    Article  CAS  Google Scholar 

  17. Khurgin JB, Sun G (2012) How small can “nano” be in a “nanolaser”. Nanophotonics 1:3–8

    Article  CAS  Google Scholar 

  18. Oulton RF (2012) Plasmonics: loss and gain. Nat Photonics 6:219–221

    Article  CAS  Google Scholar 

  19. Yang W, Hu XD (2014) Theoretical study of a planar structure plasmonic nanolaser in visible regime. Plasmonics 9:959–964

    Article  CAS  Google Scholar 

  20. Yang W, Zong H, Ji QB, Yan TX, Hu XD (2014) The design criteria of hybrid waveguides using semiconductor gain to compensate the metal loss towards nano-scale lasers with high plasmonicity. Appl Phys Lett 105:033109

    Article  CAS  Google Scholar 

  21. Sarid D, Challener W (2010) Modern introduction to surface plasmons. Cambridge University Press, Cambridge, pp 164–172

    Book  Google Scholar 

  22. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  23. Yin Y, Qiu T, Li J, Chu PK (2012) Plasmonic nano-lasers. Nano Energy 1:25–41

    Article  CAS  Google Scholar 

  24. Ra YH, Navamathavan R, Yoo HI, Lee CR (2014) Single nanowire light-emitting diodes using uniaxial and coaxial InGaN/GaN multiple quantum wells synthesized by metalorganic chemical vapor deposition. Nano Lett 14:1537–1545

    Article  CAS  Google Scholar 

  25. Muller J, Scheubeck M, Sabathil M, Bruderl G, Dini D, Tautz S, Lermer T, Breidenassel A, Lutgen S (2010) Gain analysis of blue nitride-based lasers by small signal modulation. Appl Phys Lett 96:131105

    Article  CAS  Google Scholar 

  26. Li DB, Ning CZ (2010) Peculiar features of confinement factors in a metal-semiconductor waveguide. Appl Phys Lett 96:181109

    Article  CAS  Google Scholar 

  27. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496–500

    Article  CAS  Google Scholar 

  28. Maslov AZ, Ning CZ (2007) Size reduction of a semiconductor nanowire laser by using metal coating. Proc SPIE 6468:64680I

    Article  CAS  Google Scholar 

  29. Li DB, Ning CZ (2009) Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys Rev B 80:153304

    Article  CAS  Google Scholar 

  30. Jun YC, Kekatpure RD, White JS, Brongersma ML (2008) Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Phys Rev B 78:153111

    Article  CAS  Google Scholar 

  31. Ding K, Ning CZ (2012) Metallic subwavelength-cavity semiconductor nanolasers. Light Sci Appl 1, e20

    Article  CAS  Google Scholar 

  32. Berini P, Leon ID (2012) Surface plasmon-polariton amplifiers and lasers. Nat Photonics 6:16–24

    Article  CAS  Google Scholar 

  33. Maslov AV, Miyawaki MJ (2010) Confinement factors and optical gain in subwavelength plasmonic resonators. J Appl Phys 108:083105

    Article  CAS  Google Scholar 

  34. Govyadinov AA, Podolskiy VA (2006) Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides. Phys Rev Lett 97:223902

    Article  CAS  Google Scholar 

  35. Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245

    Article  CAS  Google Scholar 

  36. Winsemius P, van Kampen FF, Lengkeek HP, van Went CG (1976) Temperature dependence of the optical properties of Au, Ag and Cu. J Phys F: Metal Phys 6:1583

    Article  CAS  Google Scholar 

  37. Fort E, Grésillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41:013001

    Article  CAS  Google Scholar 

  38. Yang W, He YF, Lei L, Hu XD (2013) Practicable alleviation of efficiency droop effect using surface plasmon coupling in GaN-based light emitting diodes. Appl Phys Lett 102:241111

    Article  CAS  Google Scholar 

  39. Bertazzi F, Zhou X, Goano M, Ghione G, Bellotti E (2013) Auger recombination in InGaN/GaN quantum wells: a full-Brillouin-zone study. Appl Phys Lett 103:081106

    Article  CAS  Google Scholar 

  40. Okamoto K, Kawakami Y (2009) High-efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics. IEEE J Sel Top Quantum Electron 15:1199–1208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61076013 and 60990313, and National Basic Research Program of China under Grant No. 2012CB619304.

Ethical Statement

We have read and have abided by the statement of ethical standards for manuscripts submitted to Plasmonics: (1) we confirm that this manuscript is original and has not been published elsewhere and is not under consideration by another journal; (2) the authors declare no conflict of interest; and (3) this article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Ji, Q., Zong, H. et al. Theoretical Investigation of Loss-Compensating Hybrid Waveguide Using Quasi-One-Dimensional Surface Plasmon for Green Nanolaser. Plasmonics 11, 159–165 (2016). https://doi.org/10.1007/s11468-015-0001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0001-8

Keywords

Navigation