Skip to main content

Advertisement

Log in

Nanoplasmonic Enhancement of Molecular Fluorescence: Theory and Numerical Modeling

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Significant emission enhancement of fluorescent molecules placed in close proximity to metallic nanoparticles has been observed. Recent advances in nanotechnology have enabled the introduction of plasmon-enhanced molecular fluorescence in various applications. Comprehensive theory of the physics behind this enhancement mechanism has also been developed. However, most of the existing analytical tools are applicable mainly for particular nanoparticles in either spherical or ellipsoidal shapes. Since the plasmonic enhancement of molecular fluorescence is dependent on various parameters such as shape, size, and distribution of nearby nanoparticles, it is crucial to have more powerful analysis tools to be able to handle any arbitrary nanoparticles. For this purpose, the 3D finite element method, which is a commonly used technique for arbitrary structures, is implemented and reported in this paper. The emitting molecule is assumed to be an electric dipole point source. The fluorescence enhancement factor is described in term of a local electric field-enhancement factor and the quantum yield of the system. The model is validated by comparison to the approximate quasistatic model and the exact Mie theory. It provides more accurate results than those of the quasistatic model, which makes it become the powerful numerical approach for investigation of arbitrary nanostructure influence on molecular fluorescence. It is then applied for investigating the emission characteristics of the fluorescent molecule when it is placed in the vicinity of more complicated structures including dimers and chains of coupled nanoparticles. It is found that these coupled nanoparticle configurations provide stronger fluorescence enhancement than the single nanoparticle of the same particle size when the inter-particle gap is small. It is attributed to the higher electric-field enhancement in the inter-particle gap region via strong surface plasmon coupling effects of two neighboring nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Purcell EM (1946) Phys Rev 69:681

    Article  Google Scholar 

  2. Goy P, Raimond JM, Gross M, Haroche S (1983) Phys Rev Lett 50:1903–1906

    Article  CAS  Google Scholar 

  3. Hulet RG, Hilfer ES, Kleppner D (1985) Phys Rev Lett 55:2137–2140

    Article  CAS  Google Scholar 

  4. John S (1987) Phys Rev Lett 58:2486–2489

    Article  CAS  Google Scholar 

  5. Yablonovitch E (1987) Phys Rev Lett 58:2059–2062

    Article  CAS  Google Scholar 

  6. Boroditsky M, Vrijen R, Krauss TF, Coccioli R, Bhat R, Yablonovitch EJ (1999) Lightwave Technol 17:2096–2112

    Article  CAS  Google Scholar 

  7. Gerard JM, Sermage B, Gayral B, Legrand B, Costard E, Thierry-Mieg V (1988) Phys Rev Lett 81:1110–1113

    Article  Google Scholar 

  8. Gerard JM, Gayral BJ (1999) Lightwave Technol 17:2089–2095

    Article  CAS  Google Scholar 

  9. Kiraz A, Michler P, Becher C, Gayral B, Imamoglu A, Zhang LD, Hu E, Schoenfeld WV, Petroff PM (2001) App Phys Lett 78:3932–3934

    Article  CAS  Google Scholar 

  10. Drexhage KHJ (1970) Lumin 1:693–701

    Article  Google Scholar 

  11. Kuhn H (1970) J Chem Phys 53:101

    Article  CAS  Google Scholar 

  12. Agarwal GS (1975) Phys Rev B 12:1475

    Article  Google Scholar 

  13. Grossel P, Vigoureux JM, Payen E (1977) Opt Commun 20:192

    Article  Google Scholar 

  14. Wylie JM, Sipe JE (1984) Phys Rev A 30:1185

    Article  CAS  Google Scholar 

  15. Grossel P, Van-Labeke D, Vigoureux JM (1983) Chem Phys Lett 99:193

    Article  CAS  Google Scholar 

  16. Chew H (1988) Phys Rev A 38:3410

    Article  CAS  Google Scholar 

  17. Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra UK, DenBaars SP (1999) Phys Rev B 60:11564–11567

    Article  CAS  Google Scholar 

  18. Chance RR, Prock A, Silbey RJ (1974) Chem Phys 60:2744–2748

    CAS  Google Scholar 

  19. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Felfmann J, Levi SA, van Veggel F, Reinhoudt DN, Moller M, Gittins DI (2002) Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  20. Biteen JS, Lewis NS, Atwater HA, Mertens H, Polman A (2006) Appl Phys Lett 88:131109

    Article  Google Scholar 

  21. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Nano Lett 7:496–501

    Article  CAS  Google Scholar 

  22. Betzig E, Chichester R (1993) J Science 262:1422

    Article  CAS  Google Scholar 

  23. Michaelis J, Hettich C, Mlynek J, Sandoghdar V (2000) Nature 405:325

    Article  CAS  Google Scholar 

  24. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A (2004) Nat Matters 3:601–605

    Article  CAS  Google Scholar 

  25. Catchpole KR, Pillai SJ (2006) Lumin 121:315–318

    Article  CAS  Google Scholar 

  26. Le KQ, Bienstman P (2011) Plasmonic 6:53–57

    Article  CAS  Google Scholar 

  27. Painter O, Lee RK, Scherer A, Yariv A, O’Brien JD, Dapkus PD, Kim I (1999) Science 284:1819–1821

    Article  CAS  Google Scholar 

  28. Fischer S, Steinkemper H, Loper P, Hermle M, Goldschmidt JC (2011) J Appl Phys 111:013109

    Article  Google Scholar 

  29. Goldschmidt JC, Fisher S, Steinkemper H, Hallermann F, Plessen Von G, Kramer KW, Biner D, Hermle M (2012) IEEE J Photovolt 2:134–140

    Article  Google Scholar 

  30. Atre AC, Etxarri AG, Alaeian H, Dionne JA (2012) J Opt 14:024008

    Article  Google Scholar 

  31. Dynich RA, Ponyavina ANJ (2008) Appl Spectrosc 75:831–837

    Google Scholar 

  32. Kottmann JP, Martin OJF (2001) Opt Lett 26:1096–1098

    Article  CAS  Google Scholar 

  33. Li K, Stockman MI, Bergman D (2003) J Phys Rev Lett 91:227402

    Article  Google Scholar 

  34. Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002

    Article  Google Scholar 

  35. Shimizu KT, Woo WK, Fisher BR, Eisler HJ, Bawendi MG (2002) Phys Rev Lett 89:117401

    Article  CAS  Google Scholar 

  36. Dulkeith E, Ringler M, Klar TA, Felfmann J, Javier AM, Parak WJ (2005) Nano Lett 5:858–589

    Article  Google Scholar 

  37. Trabesinger W, Kramer A, Kreiter M, Hecht B, Wild UP (2002) Appl Phys Lett 81:2118

    Article  CAS  Google Scholar 

  38. Krug JT, Sanchez EJ, Xei XS (2005) Appl Phys Lett 86:233102

    Article  Google Scholar 

  39. Lakowicz JR (2005) Anal Biochem 337:171–194

    Article  CAS  Google Scholar 

  40. Liaw JW, Chen JH, Chen CS, Kuo MK (2009) Opt Express 17:13532

    Article  CAS  Google Scholar 

  41. Zoriniants G, Barnes WL, New J (2008) Phys 10:105002

    Google Scholar 

  42. Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar TA, Felfmann J (2008) Phys Rev Lett 100:203002

    Article  CAS  Google Scholar 

  43. Blanco LA, De Garcia Abojo FJ (2004) Phys Rev B 69:205414

    Article  Google Scholar 

  44. Chowdhury MH, Pond J, Gray SK, Lakowicz JR (2008) J Phys Chem C 112:11236

    Article  CAS  Google Scholar 

  45. Xu YL (1995) Appl Opt 34:4573–4588

    Article  CAS  Google Scholar 

  46. Xu YL (1998) Phys Lett A 249:30–36

    Article  CAS  Google Scholar 

  47. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mullen K, Moerner WE (2009) W E Nature Photon 3:654–657

    Article  CAS  Google Scholar 

  48. Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  49. Martin OJF, Girard C, Dereux A (1995) Phys Rev Lett 74:526–529

    Article  CAS  Google Scholar 

  50. De Garcia Abojo FJ, Howie A (1998) Phys Rev Lett 80:5180–5183

    Article  Google Scholar 

  51. Miao X, Brener I, Luk TSJ (2010) Opt Soc Am B 27:1561–1570

    Article  CAS  Google Scholar 

  52. Polemi A, Chuford KL (2012) J Chem Phys 136:184703

    Article  Google Scholar 

  53. Khoury CG, Norton SJ, Vo-Dinh T (2010) Nanotechnology 21:315203

    Article  Google Scholar 

  54. Kim YS, Leung PT, George TF (1988) Surf Sci 195:1–14

    Article  CAS  Google Scholar 

  55. Gersten J, Nitzan A (1981) J Chem Phys 75:1139

    Article  CAS  Google Scholar 

  56. Guzatov DV, Vaschenko SV, Stankevich VV, Lunevich AY, Glukhov YF, Gaponenko SVJ (2012) Phys Chem C 116:10723–10733

    Article  CAS  Google Scholar 

  57. Chowdhury MH, Pond J, Gray SK, Lakowicz JR (2008) J Phys Chem C 112:11236

    Article  CAS  Google Scholar 

  58. Mie G (1908) Ann Phys (Leipzig) 25:377–445

    Article  CAS  Google Scholar 

  59. Abramowitz M, Stegun IA (1965) Handbook of Mathematical Functions. Dover, New York

    Google Scholar 

  60. Johnson B, Christy RW (1972) Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  61. Mertens H, Koenderink AF, Polman A (2007) Phys Rev B 76:115123

    Article  Google Scholar 

  62. Valeur B, Berberan MN (2012) Molecular fluorescence: principles and applications. Wiley-VCH, Germany

    Book  Google Scholar 

  63. Le KQ, John S (2014) Opt Express 22:A1–A12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khai Q. Le.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, K.Q. Nanoplasmonic Enhancement of Molecular Fluorescence: Theory and Numerical Modeling. Plasmonics 10, 475–482 (2015). https://doi.org/10.1007/s11468-014-9830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9830-0

Keywords

Navigation