Skip to main content
Log in

Fano Resonance with Ultra-High Figure of Merits Based on Plasmonic Metal-Insulator-Metal Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A plasmonic nano-sensor is proposed by means of Fano resonance in a metal-insulator-metal (MIM) waveguide structure, which consists of two identical slot cavities placed nearby two symmetrical grooves in a MIM bus waveguide. Due to the interaction of the broad bright mode and the narrow dark mode caused by the grooves and the side-coupled slot cavities, respectively, the transmission spectrum possesses a sharp asymmetrical profile. The spectral line shape can be manipulated by changing the length of the grooves, and the wavelength of the resonance peak has a linear relationship with the length of the slot cavity. These characteristics offer flexibility to design the device. This nano-sensor yields a sensitivity of ~903 nm/RIU and a figure of merit (FOM) of ~3.1 × 105. Besides, dual Fano resonance peaks are also achieved by shifting the slot cavities away from the center of the grooves, resulting in a FOM as high as 4.6 × 105. The proposed structure may find important applications in the on-chip nano-sensing area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luk’yanchuk B, Zheludev N, Maier S, Halas N, Nordlander P, Giessen H, Chong C (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9(9):707–715

    Article  Google Scholar 

  2. Miroshnichenko E, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  3. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(9):1663–1667

    Article  CAS  Google Scholar 

  4. Chen JJ, Li Z, Zhang X, Xiao JH, Gong QH (2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3:1451

    Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  6. Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H (2011) Three-dimensional plasmon rulers. Science 332(6036):1407–1410

    Article  CAS  Google Scholar 

  7. Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135–1138

    Article  CAS  Google Scholar 

  8. Artar A, Yanik AA, Altug H (2011) Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett 11(9):3694–3700

    Article  CAS  Google Scholar 

  9. Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4(3):1521–1528

    Article  CAS  Google Scholar 

  10. Wang JQ, Fan CZ, He JN, Ding P, Liang EJ, Xue QZ (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21(2):2236–2244

    Article  Google Scholar 

  11. Zhang ZS, Yang ZJ, Li JB, Hao ZH, Wang QQ (2011) Plasmonic interferences in two-dimensional stacked double-disk array. Appl Phys Lett 98(17):173111

    Article  Google Scholar 

  12. Fang ZY, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11(10):4475–4479

    Article  CAS  Google Scholar 

  13. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  Google Scholar 

  14. Chen J, Li Z, Zou Y, Deng Z, Xiao J, Gong Q (2013) Coupled-resonator-induced fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8(4):1627–1631

    Article  CAS  Google Scholar 

  15. Piao X, Yu S, Koo S, Lee K, Park N (2011) Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt Express 19(11):10907–10912

    Article  CAS  Google Scholar 

  16. Qi J, Chen Z, Chen J, Li Y, Qiang W, Xu J, Sun Q (2014) Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt Express 22(12):14688–14695

    Article  Google Scholar 

  17. Wen KH, Yan LS, Pan W, Luo B, Guo Z, Guo YH, Luo XG (2014) Electromagnetically induced transparency-like transmission in a compact side-coupled T-shaped resonator. J Lightwave Technol 32(9):1701–1707

    Article  Google Scholar 

  18. Wen KH, Yan LS, Hu YH, Chen L, Lei L (2014) A plasmonic wavelength-selected intersection structure. Plasmonics 9(3):685–690

    Article  CAS  Google Scholar 

  19. Song G, Yu L, Wu C, Duan G, Wang L, Xiao J (2013) Polarization splitter with optical bistability in metal gap waveguide nanocavities. Plasmonics 8(2):943–947

    Article  CAS  Google Scholar 

  20. Liu Y, Zhou F, Yao B, Cao J, Mao Q (2013) High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide. Plasmonics 8(2):1035–1041

    Article  CAS  Google Scholar 

  21. Dionne JA, Sweatlock LA, Atwater HA (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  Google Scholar 

  22. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876

    Article  Google Scholar 

  23. Ma FS, Lee C (2013) Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal waveguides. J Lightwave Technol 31(17):2876–2880

    Article  Google Scholar 

  24. Wen KH, Yan LS, Pan W, Luo B, Guo Z, Guo YH, Luo XG (2013) Design of plasmonic comb-like filters using loop-based resonators. Plasmonics 8(2):1017–1022

    Article  CAS  Google Scholar 

  25. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2):161–167

    Article  CAS  Google Scholar 

  26. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782

    Article  Google Scholar 

  27. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the China Postdoctoral Science Foundation (No. 2014 M552173), the Open Research Fund of State Key Lab of Optical Technologies for Micro-Engineering and Nano-Fabrication of China, and the Research Fund of Guangdong University of Technology (No. 13ZK0387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunhua Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, K., Hu, Y., Chen, L. et al. Fano Resonance with Ultra-High Figure of Merits Based on Plasmonic Metal-Insulator-Metal Waveguide. Plasmonics 10, 27–32 (2015). https://doi.org/10.1007/s11468-014-9772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9772-6

Keywords

Navigation