Skip to main content
Log in

Improvement on the Performance of InP/CdS Solar Cells with the Inclusion of Plasmonic Layer of Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The effect of nano-Ag (n-Ag) plasmonic layer in InP/CdS solar cell structure was examined. An enhancement of short circuit current improving the overall cell efficiency was observed in InP/n-Ag/CdS cells. Location of the plasmonic layer in the above cell structure has been analyzed critically. The effect of introducing plasmonic layer on the overall performance of the cell has been studied in terms of the morphology, particle size distribution, optical absorption, I–V, C–V characteristics, and lifetime of the photo-generated carriers. Secondary ion mass spectroscopy (SIMS) studies were carried out for investigating possible interface alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–214

    Article  CAS  Google Scholar 

  2. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105–093108

    Article  Google Scholar 

  3. Polman A (2008) Plasmonics applied. Science 322:868

    Article  Google Scholar 

  4. Pudasaini PR, Ayon AA (2012) Nanostructured thin film silicon solar cells efficiency improvement using gold nanoparticles. Phys Status Solidi (a) 209:1475–1480

    Article  CAS  Google Scholar 

  5. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  CAS  Google Scholar 

  6. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  CAS  Google Scholar 

  7. Lin C, Povinelli ML (2010) The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays. Appl Phys Lett 97:071110–071112

    Article  Google Scholar 

  8. Pudasaini PR, Ayon AA (2013) Nanostructured plasmonics silicon solar cells. Microelectron Eng 110:126–131

    Article  CAS  Google Scholar 

  9. Konda RB, Mundle R, Mustafa H, Bamiduro O, Pradhan AK, Roy UN, Cui Y, Burger A (2007) Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl Phys Lett 91:191111

    Article  Google Scholar 

  10. Yanshuo W, Nuofu C, Xingwang Z, Xiaoli Y, Yiming B, Min C, Yu W, Xiaofeng C, Tianmao H (2009) Ag surface plasmon enhanced double-layer antireflection coatings for GaAs solar cells. J Semicond 30:072005

    Article  Google Scholar 

  11. Weinberg I (1990) InP solar cells for use in space. Solar Cells 29:225

    Article  CAS  Google Scholar 

  12. Schimper HJ, Kollonitsch Z, Möller K, Seidel UU, Bloeck U, Schwarzburg K, Willig F, Hannappel T (2006) Material studies regarding InP-based high-efficiency solar cells. J Cryst Growth 287:642–646

    Article  CAS  Google Scholar 

  13. Yamagucuchi M (2001) Radiation-resistant solar cells for space use. Sol Energy Mater Sol Cells 68:31

    Article  Google Scholar 

  14. Coutts TJ, Li X, Wanlass MW, Emery KA, Gessert TA (1988) Proc. 20th IEEE photovoltaic specialists’ conference, Las Vegas, pp.660

  15. Li X, Wanlass MW, Gessert T, Emery KA, Coutts TJ (1989) High efficiency indium tin oxide/indium phosphide solar cells. Appl Phys Lett 54:2674–2676

    Article  CAS  Google Scholar 

  16. Mandal SK, Roy RK, Pal AK (2002) Surface plasmon resonance in nanocrystalline silver particles embedded in SiO2 matrix. Phys D Appl Phys 35:2198

    Article  CAS  Google Scholar 

  17. Paul R, Gayen RN, Hussain S, Khanna V, Bhar R, Pal AK (2009) Synthesis and characterization of composite films of silver nanoparticles embedded in DLC matrix prepared by plasma CVD technique. Eur Phys J Appl Phys 47:10502

    Article  Google Scholar 

  18. Hussain S, Roy RK, Pal AK (2006) Incorporation of silver nanoparticles in DLC matrix and surface plasmon resonance effect. Mater Chem Phys 99:375

    Article  CAS  Google Scholar 

  19. Zhou K, Jee SW, Guo Z, Liu S, Lee JH (2011) Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications. Appl Opt 50:G63

    Article  CAS  Google Scholar 

  20. Mott NF (1968) Conduction in glasses containing transition metal ions. J Non-Cryst Solids 1:1

    Article  CAS  Google Scholar 

  21. Shklovskii BI, Efros AL (1984) Electronic Properties of Doped Semiconductors. Springers, Berlin

    Book  Google Scholar 

  22. Demichelis F, Pirri CF, Tresso E (1993) Degree of crystallinity and electrical transport properties of microcrystalline silicon-carbon alloys. Phil Mag B 67:331

    Article  CAS  Google Scholar 

  23. Efros AL, Shklovskii BI (1975) Coulomb gap and low temperature conductivity of disordered systems. J Phys C 8:L49

    Article  CAS  Google Scholar 

  24. Khan MAM, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS (2011) Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res Lett 6:434

    Article  Google Scholar 

  25. Mandal SK, Gangopadhyay A, Chaudhuri S, Pal AK (1999) Electron transport process in discontinuous silver film. Vacuum 52:485

    Article  CAS  Google Scholar 

  26. Liau ZL, Tsaur BY, Mayer JW (1979) Influence of atomic mixing and preferential sputtering on depth profiles and interfaces. J Vac Sci Technol 16:121

    Article  CAS  Google Scholar 

  27. Manifacier JC, Murcia MD, Fillard JP, Vicario E (1977) Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure. Thin Solid Films 41:127

    Article  CAS  Google Scholar 

  28. Ferry DK (1995) Semiconductors, McMillan, New York, Ch. 5

  29. Neugebauer CA, Webb MB (1962) Electrical conduction mechanism in ultrathin, evaporated metal films. J Appl Phys 33:74

    Article  CAS  Google Scholar 

  30. Gossick BR (1955) On the transient behavior of semiconductor rectifiers. J Appl Phys 26:1356

    Article  Google Scholar 

  31. Walker AB, Peter LM, Lobato K, Cameron PJ (2006) Analysis of photovoltage decay transients in dye-sensitized solar cells. J Phys Chem B 110:25504

    Article  CAS  Google Scholar 

  32. Zaban A, Greenshtein M, Bisquert J (2003) Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. Chem Phys Chem 4:859

    CAS  Google Scholar 

  33. Pisarkiewicz T (2004) Photodecay method in investigation of materials and photovoltaic structures. Opto-Electron Rev 12:33

    CAS  Google Scholar 

  34. Kveder V, Badylevich M, Steinman E, Izotov A, Seibt M, Schroter W (2004) Room-temperature silicon light-emitting diodes based on dislocation luminescence. Appl Phys Lett 84:2106

    Article  CAS  Google Scholar 

  35. John EM, Thomas WE, Robert IF, Roy K (1979) Measurement of minority carrier life time in solar cells from photo-induced open circuit voltage decay. IEEE Trans Electron Devices ED-26:5

    Google Scholar 

  36. Landolt-Bornstein (1987) Springer-Verlag, Berlin

  37. Yamaguchi M, Shinoyama S, Uemura C (1981) Electron mobility and minority‐carrier lifetime of n‐InP single crystals grown by liquid‐encapsulated Czochralski method. J Appl Phys 52:6429

    Article  CAS  Google Scholar 

  38. Choi HJ, Hong CH, Jhon MS (2007) Cole-Cole analysis on dielectric spectra of electrorheological suspension. Int J Mod Phys B 21:4974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Department of Science and Technology, Government of India, for executing this research program. DG and BG wish to thank the Department of Science and Technology, Government of India, and UGC-DAE CSR, respectively, for granting them the fellowships. Thanks are due to Dr. Sukhvir Singh of the National Physical Laboratory, New Delhi, for his keen interest in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Ghosh, B., Hussain, S. et al. Improvement on the Performance of InP/CdS Solar Cells with the Inclusion of Plasmonic Layer of Silver Nanoparticles. Plasmonics 9, 1271–1281 (2014). https://doi.org/10.1007/s11468-014-9741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9741-0

Keywords

Navigation