Skip to main content
Log in

Tunable Extraordinary THz Transmission Using Liquid Metal-Based Devices

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we report novel designs of tunable THz plasmonic devices based on liquid metals. The designed devices will be able to dynamically control and change the spectrum responses of extraordinary THz wave transmissions. Different THz device configurations are investigated, and numerical simulations have been conducted to theoretically verify the performance of the proposed structures. Moreover, an equivalent circuit model has been developed to describe the operating principle of the proposed THz devices. Good agreement has been achieved between the theoretical models and the numerical results. These new THz devices are expected to be applied in various areas of sensing, communication, and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105

    Article  CAS  Google Scholar 

  2. Siegel PH (2004) Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech 52(10):2438–2447

    Article  Google Scholar 

  3. Hirata A, Kosugi T, Takahashi H, Yamaguchi R, Nakajima F, Furuta T, Ito H, Sugahara H, Sato Y, Nagatsuma T (2004) 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Trans Microw Theory Tech 54(5):1937–1944

    Article  Google Scholar 

  4. Krumbholz N, Gerlach K, Rutz F, Koch M, Piesiewicz R, Kurner T, Mittleman D (2006) Omnidirectional terahertz mirrors: a key element for future terahertz communication systems. Appl Phys Lett 88(20):202905

    Article  Google Scholar 

  5. Wu Z, Ng W, Gehm M, Xin H (2011) Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping. Opt Express 19(5):3962–3972

    Article  CAS  Google Scholar 

  6. Wu Z, Liang M, Ng W, Gehm M, Xin H (2012) Terahertz horn antenna based on hollow-core electromagnetic crystal (EMXT) structure. IEEE Trans Antennas Propag 60(12):5557–5563

    Article  Google Scholar 

  7. Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002) Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol 47(21):3853–3863

    Article  Google Scholar 

  8. Fischer BM, Hoffmann M, Helm H, Wilk R, Rutz F, Kleine-Ostmann T, Koch M, Jepsen PU (2005) Terahertz time-domain spectroscopy and imaging of artificial RNA. Opt Express 13(14):5205–5215

    Article  CAS  Google Scholar 

  9. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  10. Garcia-Vidal FJ, Martin-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A 7:S97–S101

    Article  Google Scholar 

  11. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  12. Rivas JG, Schotsch C, Bolivar PH, Kurz H (2003) Enhanced transmission of THz radiation through subwavelength holes. Phys Rev B 68(20):201306

    Article  Google Scholar 

  13. Cao H, Nahata A (2004) Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. Opt Express 12(16):3664–3672

    Article  Google Scholar 

  14. O’Hara J, Averitt RD, Taylor AJ (2004) Terahertz surface plasmon polariton coupling on metallic gratings. Opt Express 12(25):6397–6402

    Article  Google Scholar 

  15. Wang J, Liu S, Vardeny ZV, Nahata A (2012) Liquid metal-based plasmonics. Opt Express 20(3):2346–2353

    Article  CAS  Google Scholar 

  16. Wang J, Liu S, Nahata A (2012) Reconfigurable plasmonic devices using liquid metals. Opt Express 20(11):12119–12126

    Article  CAS  Google Scholar 

  17. Battula A, Lu Y, Knize RJ, Reinhardt K, Chen S (2007) Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape. Opt Express 15(22):14629–14635

    Article  Google Scholar 

  18. Chen H, Lu H, Azad AK, Averitt RD, Gossard AC, Trugman SA, O’Hara JF, Taylor AJ (2008) Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Opt Express 16(11):7641–7648

    Article  Google Scholar 

  19. Wang W, Lu Y, Knize RJ, Reinhardt K, Chen S (2009) Tunable and polarization-selective THz range transmission properties of metallic rectangular array with a varying hole channel shape. Opt Express 17(9):7361–7367

    Article  CAS  Google Scholar 

  20. Wang W, Lu Y, Knize RJ, Reinhardt K, Chen S (2010) Tuning the extraordinary transmission in a metallic/dielectric CDC hole array by changing the temperature. Opt Express 18(15):15553–15559

    Article  CAS  Google Scholar 

  21. Cheng JT, Park SY, Chen CL (2013) Optofluidic solar concentrators using electrowetting tracking: concept, design, and characterization. Sol Energy 89:152–161

    Article  CAS  Google Scholar 

  22. Cheng J, Chen CL (2010) Active thermal management of on-chip hot spots using EWOD-driven droplet microfluidics. Exp Fluids 49(6):1349–1357

    Article  Google Scholar 

  23. Cheng J, Chen CL (2010) Adaptive chip cooling using electrowetting on coplanar control electrodes. Nanoscale Microscale Thermophysical Eng 14(2):63–74

    Article  CAS  Google Scholar 

  24. Cheng J, Chen CL (2011) Adaptive beam tracking and steering via electrowetting-controlled liquid prism. Appl Phys Lett 99(19):191108

    Article  Google Scholar 

  25. Beruete M, Navarro-Cia M, Sorolla M, Campillo I (2007) Polarized left-handed extraordinary optical transmission of subterahertz waves. Opt Express 15(13):8125–8134

    Article  Google Scholar 

  26. Huang X, Peng R, Fan R (2010) Making metals transparent for white light by spoof surface plasmons. Phys Rev Lett 105(24):243901

    Article  Google Scholar 

  27. Beruete M, Navarro-Cia M, Torres V, Sorolla M (2011) Redshifting extraordinary transmission by simple inductance addition. Phys Rev B 84(7):075140

    Article  Google Scholar 

  28. Alu A, D’Aguanno G, Mattiucci N, Bloemer MJ (2011) Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. Phys Rev Lett 106(12):123902

    Article  Google Scholar 

  29. Subramania G, Foteinopoulou S, Brener I (2011) Nonresonant broadband funneling of light via ultrasubwavelength channels. Phys Rev Lett 107(16):163902

    Article  CAS  Google Scholar 

  30. Fan R, Peng R, Huang X, Li J, Liu Y, Hu Q, Wang M, Zhang X (2012) Transparent metals for ultrabroadband electromagnetic waves. Adv Mater 24(15):1980–1986

    Article  CAS  Google Scholar 

  31. Medina F, Mesa F, Marques R (2008) Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Trans Microw Theory Tech 56(12):3108–3120

    Article  Google Scholar 

  32. Medina F, Mesa F, Skigin DC (2010) Extraordinary transmission through arrays of slits: a circuit theory model. IEEE Trans Microw Theory Tech 58(1):105–115

    Article  Google Scholar 

  33. Yang R, Rodriguez-Berral R, Medina F, Hao Y (2011) Analytical model for the transmission of electromagnetic waves through arrays of slits in perfect conductors and lossy metal screens. J of Appl Phys 109:103107

    Article  Google Scholar 

  34. Pozar DM (2011) Microwave engineering, 4th ed., Wiley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arigong, B., Cheng, J., Zhou, R. et al. Tunable Extraordinary THz Transmission Using Liquid Metal-Based Devices. Plasmonics 9, 1221–1227 (2014). https://doi.org/10.1007/s11468-014-9734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9734-z

Keywords

Navigation