Skip to main content
Log in

Enhancing the Surface-State Emission in Trap-Rich CdS Nanocrystals by Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

It is well known that surface plasmon resonance (SPR) can selectively enhance the photoluminescence (PL) from nearby chromophores with a single emission peak at an appropriate distance. Here, we combine white light-emitting CdS quantum dot nanocrystals containing band-edge and surface-state emissions simultaneously with Ag nanoparticles and study the interaction between them. It is found that the surface-state emission is always enhanced while the band-edge emission quenched regardless of the SPR wavelength of Ag nanoparticles. This phenomenon reveals that the SPR of Ag nanoparticles is not enhancing the emission from a wavelength-matched state. We propose that the surface plasmon of Ag nanoparticles is first excited by the energy of the band-edge emission and then the excited energetic electrons transfer to the surface-state of CdS. Through this energy transfer process, the surface-state emission is enhanced and band-edge emission quenched. This investigation can not only deliver understanding of the complicated interaction between metallic nanoparticles and nearby multi-emission-peak contained chromophores, but it also has potential applications in tuning the color temperature of white light-emitting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (2009) Optical properties of metal clusters. Springer Ser Mater Sci 25:1–12

    Article  Google Scholar 

  2. Papierska P, Witkowski BS, Derkachova A, Korona KP, Binder J, Gałkowski K, Wachnicki Ł, Godlewski M, Dietl T, Suffczyński J (2013) Modification of emission properties of ZnO layers due to plasmonic near-field coupling to ag nanoislands. Plasmonics 8:913–919

    Article  CAS  Google Scholar 

  3. Jaiswal A, Sanpui P, Chattopadhyay A, Ghosh SS (2011) Investigating fluorescence quenching of ZnS quantum dots by silver nanoparticles. Plasmonics 6:125–132

    Article  CAS  Google Scholar 

  4. Li T, Li Q, Xu Y, Chen XJ, Dai QF, Liu HY, Lan S, Tie SL, Wu LJ (2012) Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope. ACS Nano 6:1268–1277

    Article  CAS  Google Scholar 

  5. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  Google Scholar 

  6. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109–116

    Article  CAS  Google Scholar 

  7. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  8. Lance Kelly K, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  9. Bisker G, Yelin D (2012) Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis. J Opt Soc Am B 29:1383–1393

    Article  CAS  Google Scholar 

  10. Naiki H, Masuhara A, Masuo S, Onodera T, Kasai H, Oikawa H (2013) Highly controlled plasmonic emission enhancement from metal-semiconductor quantum dot complex nanostructures. J Phys Chem C 117:2455–2459

    Article  CAS  Google Scholar 

  11. Pompa PP, Martiradonna L, Torre AD, Sala FD, Manna L, De Vittorio M, Calabi F, Cingolani R, Rinaldi R (2006) Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotech 1:126–130

    Article  CAS  Google Scholar 

  12. Chu S, Ren JJ, Yan D, Huang J, Liu JL (2012) Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence. Appl Phys Lett 101:043122

    Article  Google Scholar 

  13. Lin Y, Liu XQ, Wang T, Chen C, Wu H, Liao L, Liu C (2013) Shape-dependent localized surface plasmon enhanced UV-emission from ZnO grown by atomic layer deposition. Nanotechnology 24:125705

    Article  Google Scholar 

  14. Ito Y, Matsuda K, Kanemitsu Y (2007) Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces. Phys Rev B 75:033309

    Article  Google Scholar 

  15. Ueda A, Tayagaki T, Kanemitsu Y (2008) Carrier multiplication in carbon nanotubes studied by femtosecond pump-probe spectroscopy. Appl Phys Lett 92:133118

    Article  Google Scholar 

  16. Chen YC, Munechika K, La Plante IJ, Munro AM, Skrabalak SE, Xia YN, Ginger DS (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl Phys Lett 93:053106

    Article  Google Scholar 

  17. Munechika K, Chen YC, Tillack AF, Kulkarni AP, La Plante IJ, Munro AM, Ginger DS (2010) Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett 10:2598–2603

    Article  CAS  Google Scholar 

  18. Ming T, Zhao L, Chen H, Woo KC, Wang J, Lin HQ (2011) Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod–fluorophore hybrid nanostructures. Nano Lett 11:2296–2303

    Article  CAS  Google Scholar 

  19. Bowers MJ, McBride JR, Rosenthal SJ (2005) White-light emission from magic-sized cadmium selenide nanocrystals. J Am Chem Soc 127:15378–15379

    Article  CAS  Google Scholar 

  20. Nizamoglu S, Mutlugun E, Akyuz O, Perkgoz NK, Demir HV, Liebscher L, Sapra S, Gaponik N, Eychmüller A (2008) White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New J Phys 10:023026

    Article  Google Scholar 

  21. Yu WW, Peng XG (2002) Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew Chem 114:2474–2477

    Article  Google Scholar 

  22. Chestnoy N, Harris TD, Hull R, Brus LE (1986) Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J Phys Chem 90:3393–3399

    Article  CAS  Google Scholar 

  23. Lin HY, Chen YF, Wu JG, Wang DI, Chen CC (2006) Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures. Appl Phys Lett 88:161911

    Article  Google Scholar 

  24. Ozel T, Soganci IM, Nizamoglu S, Huyal IO, Mutlugun E, Sapra S, Gaponik N, Eychmüller A, Demir HV (2008) Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New J Phys 10:083035

    Article  Google Scholar 

  25. Cheng PH, Li DS, Yuan ZZ, Chen PL, Yang DR (2008) Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film. Appl Phys Lett 92:041119

    Article  Google Scholar 

  26. Zhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ (2011) Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling. Europhys Lett 93:57009

    Article  Google Scholar 

  27. Lin JM, Lin HY, Cheng CL, Chen YF (2006) Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles. Nanotechnology 17:4391–4394

    Article  Google Scholar 

  28. Lin HY, Cheng CL, Chou YY, Huang LL, Chen YF (2006) Enhancement of band gap emission stimulated by defect loss. Opt Express 14:2372–2379

    Article  CAS  Google Scholar 

  29. Shao DL, Sun HT, Yu MP, Lian J, Sawyer S (2012) Enhanced ultraviolet emission from poly(vinyl alcohol) ZnO nanoparticles using a SiO2–Au core/shell structure. Nano Lett 12:5840–5844

    Article  CAS  Google Scholar 

  30. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  31. Sun Y, Xia Y (2003) Triangular nanoplates of silver: synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv Mater 15:695–699

    Article  CAS  Google Scholar 

  32. Li XL, Zhang JH, Xu WQ, Jia HY, Wang X, Yang B, Zhao B, Li BF, Ozaki Y (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and sers activity. Langmuir 19:4285–4290

    Article  CAS  Google Scholar 

  33. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103:9846–9853

    Article  CAS  Google Scholar 

  34. Vernon KC, Funston AM, Novo C, Gomez DE, Mulvaney P, Davis TJ (2010) Influence of particle-substrate interaction on localized plasmon resonances. Nano Lett 10:2080–2086

    Article  CAS  Google Scholar 

  35. Yu P, Huang J, Yuan C-T, Tang J (2010) Synthesis of silver nanoprisms and nanodiscs an applications in fluorescence blinking suppression. J Chin Chem Soc 57:528–534

    Article  CAS  Google Scholar 

  36. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370

    Article  CAS  Google Scholar 

  37. Dulkeith E, Ringler M, Klar TA, Feldmann J (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589

    Article  CAS  Google Scholar 

  38. Seelig J, Leslie K, Renn A, Kuhn S, Jacobsen V, Corput v d M, Wyman C, Sandoghdar V (2007) Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. Nano Lett 7:685–689

    Article  CAS  Google Scholar 

  39. Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2005) Nanometal surface energy transfer in optical rulers, breaking the fret barrier. J Am Chem Soc 127:3115–3119

    Article  CAS  Google Scholar 

  40. Kamat PV, Shanghavi B (1997) Interparticle electron transfer in metal/semiconductor composites. Picosecond dynamics of CdS-capped gold nanoclusters. J Phys Chem B 101:7675–7679

    Article  CAS  Google Scholar 

  41. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  CAS  Google Scholar 

  42. Sönnichsen C, Franzl T, Wilk T, Plessen v G, Feldmann J (2002) Drastic reduction of plasmon damping in gold nanorods. J Phys Rev Lett 88:077402

    Article  Google Scholar 

  43. Li Q, Guo SN, Xu P, Wu LJ (2013) Controllable surface-state emission from colloidal CdS quantum dots under different growth conditions. Cryst Res Technol 48:977–982

    Article  CAS  Google Scholar 

  44. Yeh DM, Huang CF, Lu YC, Yang CC (2008) White-light light-emitting device based on surface plasmon-enhanced CdSe/ZnS nanocrystal wavelength conversion on a blue/green two-color light-emitting diode. Appl Phys Lett 92:091112

    Article  Google Scholar 

  45. Cicek N, Nizamoglu S, Ozel T, Mutlugun E, Karatay DU, Lesnyak V, Otto T, Gaponik N, Eychmüller A, Demir HV (2009) Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers. Appl Phys Lett 94:061105

    Article  Google Scholar 

  46. Chanyawadee S, Lagoudakis PG, Harley RT, Charlton MBD, Talapin DV, Huang HW, Lin CH (2010) Increased color conversion efficiency in hybrid light emitting diodes utilizing non-radiative energy transfer. Adv Mater 22:602–606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Project of High-level Professionals in the Universities of Guangdong Province and the National Natural Science Foundation (Grant No. 61378082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Li, Q., Li, T. et al. Enhancing the Surface-State Emission in Trap-Rich CdS Nanocrystals by Silver Nanoparticles. Plasmonics 9, 1039–1047 (2014). https://doi.org/10.1007/s11468-014-9712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9712-5

Keywords

Navigation