Skip to main content
Log in

Effect of Interparticle Field Enhancement in Self-Assembled Silver Aggregates on Surface-Enhanced Raman Scattering

Plasmonics Aims and scope Submit manuscript

Abstract

The presence of so-called hot spots, regions with strongly enhanced electromagnetic field, is a critical property of a substrate enabling detection of surface-enhanced Raman scattering (SERS) signals at high enhancement levels. In this work, the effect of interparticle field enhancement on SERS signals was investigated comparing SERS spectra of ethylenediaminetetraacetic-disodium salt in the chemically produced colloids with isolated and aggregated silver nanoparticles using 473 and 532-nm wavelength excitation. The presence of aggregates in the colloidal solution resulted in SERS spectra that were insensitive to wavelength excitation and much richer in structural information and of higher resolution than the corresponding SERS spectra for the colloid with isolated nanoparticles. The experimental SERS spectra were found to be consistent with the finite-difference time-domain simulation results that explored the electromagnetic response of the isolated and aggregated nanoparticles. These results provide more evidence to suggest that the aggregate formation offers favorable electromagnetic properties increasing sensitivity of Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Kneipp K, Kneipp H, Kneipp J (2006) Surface–enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single–molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39(7):443–450

    Article  CAS  Google Scholar 

  2. Lal S, Link S, Halas N (2007) Nano–optics from sensing to waveguiding. J Nat Photon 1:641–648

    Article  CAS  Google Scholar 

  3. Brolo AG (2012) Plasmonics for future biosensors. J Nat Photon 6:709–713

    Article  CAS  Google Scholar 

  4. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near–field nano–imaging and superlensing. J Nat Photon 3:388–394

    Article  CAS  Google Scholar 

  5. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  Google Scholar 

  6. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  7. Kerker M, Wang D, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl Opt 19(24):4159–4174

    Article  CAS  Google Scholar 

  8. Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:4159–4162

    Article  CAS  Google Scholar 

  9. Fleischmann M, Hendra PJ, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  10. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84(1):1–20

    Article  CAS  Google Scholar 

  11. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217

    Article  CAS  Google Scholar 

  12. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface–enhanced Raman scattering. J Phys: Condens Mater 4:1143–1212

    CAS  Google Scholar 

  13. Moskovits M (1985) Surface–enhanced spectroscopy. Rev Mod Phys 57(3):783–826

    Article  CAS  Google Scholar 

  14. Schatz G (1984) Theoretical studies of surface enhanced Raman scattering. Acc Chem Res 17(10):370–376

    Article  CAS  Google Scholar 

  15. Campion A, Kambhampati P (1998) Surface–enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  16. Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure–activity relationships in gold nanoparticle dimers and trimers for surface–enhanced Raman spectroscopy. J Am Chem Soc 132(31):10903–10910

    Article  CAS  Google Scholar 

  17. Yang Y, Shi JL, Tanaka T, Nogami M (2007) Self–assembled silver nanochains for surface–enhanced Raman scattering. Langmuir 23(24):12042–12047

    Article  CAS  Google Scholar 

  18. Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9(1):485–490

    Article  CAS  Google Scholar 

  19. Xu HX, Aizpurua J, Käll M (2000) Electromagnetic contributions to single–molecule sensitivity in surface–enhanced Raman scattering. Phys Rev E 62(3):4318–4324

    Article  CAS  Google Scholar 

  20. Le Ru EC, Etchegoin PG, Meyer M (2006) Enhancement factor distribution around a single surface–enhanced Raman scattering hot spot and its relation to single molecule detection. J Chem Phys 125(20):204701–204714

    Article  Google Scholar 

  21. Nie S, Emery SR (1997) Probing single molecules and single nanoparticles by surface–enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  22. Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS Population pumping of excited vibrational states by spontaneous surface–enhanced Raman scattering. Phys ReV Lett 76(14):2444–2447

  23. Constantino CJL, Lemma T, Antunes PA, Aroca R (2001) Single-molecule detection using surface–enhanced resonance Raman scattering and langmuir–blodgett monolayers. Anal Chem 73(15):3674–3678

    Article  CAS  Google Scholar 

  24. Lumerical Solutions, Inc. 9 Optical and photonic design and engineering software products

  25. Palik ED (ed) (1991) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  26. Krishnan K, Plane RA (1968) Raman spectra of ethylenediaminetetraacetic acid and its metal complexes. J Am Chem Soc 90(12):3195–3200

    Article  CAS  Google Scholar 

  27. Guzonas DA, Atkinson GF, Irish DE, Adams WA (1983) SERS and normal Raman spectroscopic studies of the silver electrode/KCl + EDTA solution interface. J Electroanal Chem 150(1–2):457–468

    Article  CAS  Google Scholar 

  28. Wetzel H, Pettinger B, Wenning U (1980) Surface–enhanced Raman scattering from ethylenediaminetetraacetic–disodium salt and nitrate ions on silver electrodes. Chem Phys Lett 75(1):173–178

    Article  CAS  Google Scholar 

  29. Kneipp K (2007) Surface–enhanced Raman scattering. Phys Today 60(11):40–46

    Article  CAS  Google Scholar 

  30. Knoll A (1998) Interfaces and thin films as seen by bound electromagnetic waves. Ann Rev Phys Chem 49:569–638

    Article  CAS  Google Scholar 

  31. Otto A (2005) The ‘chemical’ (electronic) contribution to surface–enhanced Raman scattering. J Raman Spectrosc 36(6–7):497–509

    Article  CAS  Google Scholar 

  32. Tamaru H, Kuwata H, Miyazaki HT, Miyano K (2002) Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 80(10):1826–1828

    Article  CAS  Google Scholar 

  33. Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090

    Article  CAS  Google Scholar 

  34. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  35. Fang Y, Seong NH, Dlott DD (2008) Measurement of the distribution of site enhancements in surface–enhanced Raman scattering. Science 321:388–392

    Article  CAS  Google Scholar 

  36. Chien FC, Huang WY, Shiu J, Kuo CW, Chen P (2009) Revealing the spatial distribution of the site enhancement for surface–enhanced Raman scattering on regular nanoparticle arrays. Opt Express 17(16):13974–13981

    Article  CAS  Google Scholar 

  37. Xu H, Käll M (2003) Polarization–dependent surface–enhanced Raman spectroscopy of isolated silver nanoaggregates. ChemPhysChem 4(9):1001–1005

    Article  CAS  Google Scholar 

  38. Emory SR, Haskins WE, Nie S (1998) Direct observation of size–dependent optical enhancement in single metal nanoparticles. J Am Chem Soc 120(31):8009–8010

    Article  CAS  Google Scholar 

  39. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Belarusian Scientific Research Program “Electronics and Photonics” (project 1.1.02). One author (PG) acknowledged the support of a Marie Curie Foundation within the 7th FP (project no. 298932, call reference: FP7-PEOPLE-2011-IIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoryia I. Shautsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shautsova, V.I., Zhuravkov, V.A., Korolik, O.V. et al. Effect of Interparticle Field Enhancement in Self-Assembled Silver Aggregates on Surface-Enhanced Raman Scattering. Plasmonics 9, 993–999 (2014). https://doi.org/10.1007/s11468-014-9706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9706-3

Keywords

Navigation