Skip to main content
Log in

SERS Study of Histamine by Using Silver Film over Nanosphere Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optical properties of histamine and l-histidine have been analyzed by using surface-enhanced Raman scattering (SERS). A silver film over nanosphere (AgFON) structure with 120-nm-thick silver film on polystyrene nanospheres 1,000 nm in diameter is fabricated by nanosphere lithography to enhance the Raman signal excited at the laser wavelength of 532 nm. Normal Raman spectrum and the SERS spectrum of histamine and l-histidine were compared. Further, vibration modes of these molecules were calculated by using density functional method. In the SERS experiment, we were able to measure the Raman spectrum with a histamine concentration as less as 100 pM. This sensitivity is higher than that from high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taylar SL (1986) Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol 17(2):91–128

    Article  Google Scholar 

  2. Lehane L, Olley J (2000) Histamine fish poisoning revisited. J Food Microbiol 58:1–37

    Article  CAS  Google Scholar 

  3. Hwang CC, Lee YC, Huang YR, Lin CM, Shiau CY, Hwang DF, Tsai YH (2010) Biogenic amines content, histamine-forming bacteria and adulteration of bonito in tuna candy products. Food Control 21:845–850

    Article  CAS  Google Scholar 

  4. Chen HC, Huang YR, Hsu HH, Lin CS, Chen WC, Lin CM, Tsai YH (2010) Determination of histamine and biogenic amines in fish cubes (Tetrapturus angustirostris) implicated in a food-borne poisoning. Food Control 21:13–18

    Article  CAS  Google Scholar 

  5. Lin WC, Jen HC, Chen CL, Hwang DF, Chang R, Hwang JS, Chiang HP (2009) SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays. Plasmonics 4:178–192

    Article  Google Scholar 

  6. Li PW, Zhang J, Zhang L, Mo YJ (2009) Surface-enhanced Raman scattering and adsorption studies of morphine on silver island film. J Vib Spectrosc 49:2–6

    Article  CAS  Google Scholar 

  7. Rodríguez-Lorenzo L, Alvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stephan O, Kociak M, Liz-Marzán LM, García de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131:4616–4618

    Article  Google Scholar 

  8. Dadosh T, Sperling J, Bryant GW, Breslow R, Shegai T, Dyshel M, Haran G, Bar-Joseph I (2009) Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer. ACS Nano 3:1988–1994

    Article  CAS  Google Scholar 

  9. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

    Article  CAS  Google Scholar 

  10. Tsai DP, Kovacs J, Wang Z, Moskovits M, Shalaev VM, Suh JS, Botet R (1994) Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters. Phys Rev Lett 72:4149–4152

    Article  CAS  Google Scholar 

  11. Shalaev VM, Botet R, Tsai DP, Kovacs J, Moskovits M (1994) Fractals: localization of dipole excitations and giant optical polarizabilities. Phys A 207:197–207

    Article  Google Scholar 

  12. Vlckova B, Gu XJ, Tsai DP, Moskovits M (1996) A microscopic surface-enhanced Raman study of a single adsorbate-covered colloidal silver aggregate. J Phys Chem 100(8):3169–3174

    Article  CAS  Google Scholar 

  13. Chiang HP, Leung PT, Tse WS (2000) Remarks on the substratetemperature dependence of surface enhanced Raman scattering. J Phys Chem B 104:2348–2350

    Article  CAS  Google Scholar 

  14. Le Ru EC, Etchegoin PG, Grand J, Fe’lidj N, Aubard J, Le’vi G, Hohenau A, Krenn JR (2008) Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Curr Appl Phys 8:467–470

    Article  Google Scholar 

  15. Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5:1065–1070

    Article  CAS  Google Scholar 

  16. Oran JM, Hinde RJ, Hatab NA, Retterer ST, Sepaniak MJ (2008) Nanofabricated periodic arrays of silver elliptical discs as SERS substrates. J Raman Spectrosc 39:1811–1820

    Article  CAS  Google Scholar 

  17. Chu H, Liu Y, Huang Y, Zhao Y (2007) A high sensitive fiber SERS probe based on silver nanorod arrays. Opt Express 15:12230–12239

    Article  CAS  Google Scholar 

  18. Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636

    Article  CAS  Google Scholar 

  19. Chaney SB, Shanmukh S, Dluhy RA, Zhao YP (2005) Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl Phys Lett 87:031908

    Article  Google Scholar 

  20. Suh JS, Lee JS (1997) Surface enhanced Raman scattering for CdS nanowires deposited in anodic aluminum oxide nanotemplate. Chem Phys Lett 281:384–388

    Article  CAS  Google Scholar 

  21. Gu GH, Kim J, Kim L, Suh JS (2007) Optimum length of silver nanorods for fabrication of hot spots. J Phys Chem C 111:7906–7909

    Article  CAS  Google Scholar 

  22. Du Y, Shi L, He T, Sun X, Mo Y (2008) SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template. Appl Surf Sci 255:1901–1905

    Article  CAS  Google Scholar 

  23. Hwang JS, Chen KY, Hong SJ, Chen SW, Syu WS, Kuo CW, Syu WY, Lin TY, Chiang HP, Chattopadhyay S, Chen KH, Chen LC (2010) The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates. Nanotechnology 21:025502

    Article  Google Scholar 

  24. Lin WC, Liao LS, Chen YH, Chang HC, Tsai DP, Chiang HP (2011) Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6:201–206

    Article  CAS  Google Scholar 

  25. Lin WC, Huang SH, Chen CL, Chen CC, Tsai DP, Chiang HP (2010) Controlling SERS intensity by tuning the size and height of a silver nanoparticle array. Appl Phys A 101:185–189

    Article  CAS  Google Scholar 

  26. Hulteen JC, Van Duyne RP (1995) Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol, A 13(3):1553–1558

    Article  Google Scholar 

  27. Haynes JC, Van Duyne RP (2001) Nanosphere lithography a versatile nanofabrication tool for studies of size-dependent. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  28. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  29. Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J Phys Chem B 106:853–860

    Article  CAS  Google Scholar 

  30. Stropp J, Trachta G, Brehm G, Schneider S (2003) A new version of AgFON substrates for high-throughput analytical SERS applications. J Raman Spectrosc 34:26–32

    Article  CAS  Google Scholar 

  31. Chiang HP, Mou B, Li KP, Chiang P, Wang D, Lin SJ, Tse WS (2001) FT-Raman, FT-IR and normal-mode analysis of carcinogenic polycyclic aromatic hydrocarbons. Part I—a density functional theory study of benzo(a)pyrene (BaP) and benzo(e)pyrene (BeP). J. Raman Spectrosc 32:45–51

    Article  CAS  Google Scholar 

  32. Chiang HP, Mou B, Li KP, Chiang P, Wang D, Lin SJ, Tse WS (2001) FT-Raman, FT-IR and normal-mode analysis of carcinogenic polycyclic aromatic hydrocarbons. Part II—a theoretical study of the transition states of oxygenation of benzo(a)pyrene (BaP). J. Raman Spectrosc 32:53–58

    Article  CAS  Google Scholar 

  33. Cinquina AL, Longo F, Calì A, De Santis L, Baccelliere R, Cozzani R (2004) Validation and comparison of analytical methods for the determination of histamine in tuna fish samples. J Chromatogr A 1032:79–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge financial support from the National Science Council of ROC under grant number NSC 100-2112-M-019-003-MY3 and National Research Program for the Department of Industrial Technology (DoIT) of the Ministry of Economic Affairs (MOEA), Republic of China (99-EC-17-A-19-S1-163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Pang Chiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, WC., Tsai, TR., Huang, HL. et al. SERS Study of Histamine by Using Silver Film over Nanosphere Structure. Plasmonics 7, 709–716 (2012). https://doi.org/10.1007/s11468-012-9362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9362-4

Keywords

Navigation