Skip to main content
Log in

The Role of Propagating and Localized Surface Plasmons for SERS Enhancement in Periodic Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Periodic arrays of plasmonic nanopillars have been shown to provide large, uniform surface-enhanced Raman scattering (SERS) enhancements. We show that these enhancements are the result of the combined impact of localized and propagating surface plasmon modes within the plasmonic architecture. Here, arrays of periodically arranged silicon nanopillars of varying sizes and interpillar gaps were fabricated to enable the exploration of the SERS response from two different structures; one featuring only localized surface plasmon (LSP) modes and the other featuring LSP and propagating (PSP) modes. It is shown that the LSP modes determine the optimal architecture, and thereby determine the optimum diameter for the structures at a given incident. However, the increase in the SERS enhancement factor for a system in which LSP and PSP cooperatively interact was measured to be over an order of magnitude higher and the peak in the diameter dependence was significantly broadened, thus, such structures not only provide larger enhancement factors but are also more forgiving of lithographic variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ et al (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  2. Jeanmaire RP, van Duyne J (1977) Surface-enhanced electrochemistry. Electroanal Chem (Elsevier Sequouia SA) 84:1–20

    CAS  Google Scholar 

  3. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826

    Article  CAS  Google Scholar 

  4. Kawata S, Inouye Y et al (2009) Plasmonic for near-field nano-imaging and superlensing. Nat Photon 3:388

    Article  CAS  Google Scholar 

  5. Smolyaninov II, Davis CC et al (2009) Magnifying superlenses and other applications of plasmonic metamaterials in microscopy and sensing. Chemphyschem 10:625

    Article  CAS  Google Scholar 

  6. Schuller JA, Barnard ES et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193

    Article  CAS  Google Scholar 

  7. Pala RA, White J et al (2009) Design of plasmonic thin film solar cells with broadband absorption enhancements. Adv Mater 21:3504

    Article  CAS  Google Scholar 

  8. Lee JW, Seo JY et al (2005) Invisible plasmonic meta-materials through impedance matching to vacuum. Opt Express 13:10681

    Article  CAS  Google Scholar 

  9. Kneipp K, Wang Y et al (1997) Single molecule detection using surface-enhanced Raman scattering. Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  10. Jiang JK, Bosnick K et al (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964

    Article  CAS  Google Scholar 

  11. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  12. Kalele SA, Tiwari NR et al (2007) Plasmon-assisted photonics at the nanoscale. J Nanophoton 1:012501

    Article  Google Scholar 

  13. Maier SA, Atwater HA et al (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  14. Ebessen TW, Genet C et al. (2008) Surface-plasmon circuitry. Physics Today (May) 44

  15. Stockman MI, Faleev SV et al (2001) Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Phys Rev Lett 87:167401

    Article  CAS  Google Scholar 

  16. Dionne JA, Sweatlock LA et al (2010) Silicon-based plasmonics for on-chip photonics. IEEE J Sel Top Quant Electron 16:295

    Article  CAS  Google Scholar 

  17. Barnes WL, Dereux A et al (2003) Surface plasmon subwavelength optics. Nature 424:824

    Article  CAS  Google Scholar 

  18. Stuart HR, Hall DG (1998) Enhanced dipole-dipole interaction between elementary radiators near a surface. Phys Rev Lett 80:5663

    Article  CAS  Google Scholar 

  19. Cesario J, Quidant R et al (2005) Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt Lett 30:3404

    Article  Google Scholar 

  20. Papanikolaou N (2007) Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys Rev B 75:235426

    Article  Google Scholar 

  21. Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34:244

    Article  CAS  Google Scholar 

  22. Mock JJ, Hill RT et al (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8(8):2245–2252

    Article  CAS  Google Scholar 

  23. Caldwell JD, Glembocki OJ et al (2011) Plasmonic nanopillar arrays for large-area, high enhancemetn surface-enhanced Raman scattering sensors. ACS Nano 5(5):4046–4055

    Article  CAS  Google Scholar 

  24. Caldwell JD, Glembocki OJ et al. (2010) Plasmo-photonic Nanowire Arrays for Large-Area Surface-enhanced Raman Scattering. Proc. of SPIE 7757:775723–1

  25. Lu Y, Liu GL et al (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for tunable surface enhanced Raman scattering substrate. Nano Lett 5(1):5–9

    Article  CAS  Google Scholar 

  26. Jackson JB, Westcott SL et al (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82(2):257–259

    Article  CAS  Google Scholar 

  27. Laurent G, Felidj N et al (2005) Evidence of multipolar excitations in surface enhanced Raman scattering. Phys Rev B 71:1–6

    Article  Google Scholar 

  28. Liu Y, Xu S et al (2010) Note: simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering. Rev Sci Instrum 81:036105

    Article  Google Scholar 

  29. Habouti S, Materfi-Tempfli M et al (2011) On-substrate, self-standing Au-nanorod arrays showing morphology controlled properties. Nano Today 6:12–19

    Article  CAS  Google Scholar 

  30. Baumberg JJ, Kelf TA et al (2005) Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett 5:2262–2267

    Article  CAS  Google Scholar 

  31. Whelan CM, Smyth MR et al (1998) HREELS, XPS, and electrochemical study of benzenethiol adsorption on Au(111). Langmuir 15:116–126

    Article  Google Scholar 

  32. Carron KT, Hurley LG (1991) Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy-Thiophenol on copper, silver and gold metal-surfaces. J Phys Chem 95:9979–9984

    Article  CAS  Google Scholar 

  33. Taylor CE, Pemberton JE et al (1999) Surface enhancement factors for Ag and Au surfaces relative to Pt surfaces for monolayers of thiophenol. Appl Spectrosc 53:1212–1221

    Article  CAS  Google Scholar 

  34. Bezares F, Caldwell JD (2011) Plasmo-photonic nanopillar arrays for large-area surface-enhanced Raman scattering sensors. Proc of SPIE 7946:79461A-1

    Google Scholar 

  35. Alexson DA, Badescu SC et al (2009) Metal-adsorbate hybridized electronic states and their impact on surface-enhanced Raman scattering. Chem Phys Lett 477:144–149

    Article  CAS  Google Scholar 

  36. Yu Q, Braswell S et al (2010) Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 21:355301

    Article  Google Scholar 

  37. Yu Q, Guan P et al (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8:1923–1928

    Article  CAS  Google Scholar 

  38. Halas NJ, Lal S et al (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  39. Marquier F, Greffet JJ et al (2005) Resonant transmission through a metallic film due to coupled modes. Opt Express 13:70

    Article  CAS  Google Scholar 

  40. Aroca R (2006) Surface-enhaced vibrational spectroscopy, 1st edn. Wiley, England

    Book  Google Scholar 

  41. Hu J,Wen-Di L et al. (2010) Effects of nanodots on surface plasmons and electric field enhancement in nano-pillar antenna array. 2010 Conference on Lasers and Electro-optics 978-1-55752-890-2.

Download references

Acknowledgments

The authors would like to thank Drs. Doewon Park and Robert Bass for their advice involving e-beam lithography. We also would like to express our thanks to Drs. James Long and Jeff Owrutsky for their helpful discussions. We also recognize the Center for Nanoscale Science and Technology at NIST in Gaithersburg, MD, USA, for the electron-beam lithography. The authors recognize funding support through the Naval Research Laboratory's Nanoscience Institute. F. J. Bezares acknowledges the support of the American Society of Engineering Education Postdoctoral Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Bezares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezares, F.J., Caldwell, J.D., Glembocki, O. et al. The Role of Propagating and Localized Surface Plasmons for SERS Enhancement in Periodic Nanostructures. Plasmonics 7, 143–150 (2012). https://doi.org/10.1007/s11468-011-9287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9287-3

Keywords

Navigation