Skip to main content

Advertisement

Log in

Quenching of Fluorescence from CdSe/ZnS Nanocrystal QDs Near Copper Nanoparticles in Aqueous Solution

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Significant quenching of fluorescence from CdSe/ZnS nanocrystal quantum dots (QDs) coated with mercaptoundecanoic ligands has been realized by copper nanoparticles (NPs). (a) Static quenching in the electrostatic association between the CdSe/ZnS QDs and cetyltrimethylammonium bromide-coated Cu NPs and (b) dynamic quenching of the same nanocrystals by polyvinylpyrrolidone-coated Cu NPs were studied. In both cases, the quenching of fluorescence from the CdSe/ZnS nanocrystals is sensitive to nanomolar concentrations of the copper NPs, and the quenching efficiency increases as spectral overlap between the CdSe/ZnS emission and the copper nanoparticle absorption increases. This suggests that the observed quenching is a result of energy transfer processes. These findings open new avenues for the utilization of Cu NPs in energy transfer-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nikoobakht B et al (2002) The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution. Photochem Photobiol 75:591–597

    Article  CAS  Google Scholar 

  2. Malicka J et al (2003) Increased resonance energy transfer between fluorophores bound to DNA in proximity to metallic silver particles. Anal Biochem 315:160–169

    Article  CAS  Google Scholar 

  3. Gueroui Z, Libchaber A (2004) Single-moleule measurements of gold-quenched quantum dots. Phys Rev Lett 93:166108/166101–166108/166104

    Google Scholar 

  4. Liu N et al (2006) Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor–metal interactions. J Am Chem Soc 128:15362–15363

    Article  CAS  Google Scholar 

  5. Tam F et al (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501

    Article  CAS  Google Scholar 

  6. Chen Y, Munechika K, Plante J-L et al. (2008) Excitation enhancement of CdSe quantum dots by single metal nanoparticles. App Phys Lett 93:053106/053101–053106/053103

    Google Scholar 

  7. Chen F-C, Wu J-L, Lee C-L et al. (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95:013305/013301–013305/013303

    Google Scholar 

  8. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–194

    Article  CAS  Google Scholar 

  9. Cheng PPH et al (2006) Dynamic and static quenching of fluorescence by 1–4 nm diameter gold monolayer-protected clusters. J Phys Chem B 110:4637–4644

    Article  CAS  Google Scholar 

  10. Fan C et al (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci 100:6297–6301

    Article  CAS  Google Scholar 

  11. Lakowicz JR et al (2002) Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301(2):261–277

    Article  CAS  Google Scholar 

  12. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24

    Article  CAS  Google Scholar 

  13. Aslan K et al (2005) Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: metal-enhanced fluorescence sensing. J Fluoresc 15:37–40

    Article  CAS  Google Scholar 

  14. Deng W et al (2009) Enhanced flow cytometry-based bead immunoassays using metal nanostructures. Anal Chem 81(17):7248–7255

    Article  CAS  Google Scholar 

  15. Chowdhury S et al (2009) Silver–copper alloy nanoparticles for metal enhanced luminescence. Appl Phys Lett 95(13):131115

    Article  Google Scholar 

  16. Aslan K, Geddes CD (2008) A review of an ultrafast and sensitive bioassay platform technology: microwave-accelerated metal-enhanced fluorescence. Plasmonics 3:89–101

    Article  Google Scholar 

  17. Kato N, Caruso F (2005) Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. J Phys Chem B 109(42):19604–19612

    Article  CAS  Google Scholar 

  18. Ao L et al (2006) Fluoroimmunoassay for antigen based on fluorescence quenching signal of gold nanoparticles. Anal Chem 78(4):1104–1106

    Article  CAS  Google Scholar 

  19. Zai-Sheng W et al (2006) Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Biochem 353:22–29

    Article  Google Scholar 

  20. Dubertret B et al (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnol 19:365–370

    Article  CAS  Google Scholar 

  21. Imahori H, Fukuzumi S (2001) Porphyrin monolayer-modified gold clusters as photoactive materials. Adv Mater 13(15):1197–1199

    Article  CAS  Google Scholar 

  22. Dyadyusha L, Yin H, Jaiswal S et al (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun 25:3201–3203

    Article  Google Scholar 

  23. Li X, Qian J, Jiang L et al. (2009) Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl Phys Lett 94:063111–063111–063113

    Google Scholar 

  24. Zhang Y et al (2007) Metal-enhanced fluorescence from copper substrates. Appl Phys Lett 90(17):173116–173113

    Article  Google Scholar 

  25. Aslan K et al (2008) Metal-enhanced fluorescence from nanoparticulate zinc films. J Phys Chem C 112(47):18368–18375

    CAS  Google Scholar 

  26. Pribik R et al (2008) Metal-enhanced fluorescence from chromium nanodeposits. J Phys Chem C 112(46):17969–17973

    Article  CAS  Google Scholar 

  27. Zhang Y et al (2009) Broad wavelength range metal-enhanced fluorescence using nickel nanodeposits. J Phys Chem C 113(36):15811–15816

    Article  CAS  Google Scholar 

  28. Zhang Y et al (2010) Metal-enhanced fluorescence from tin nanostructured surfaces. J Appl Phys 107(2):024302–024305

    Article  Google Scholar 

  29. Zhang Y et al (2010) Interactions of fluorophores with iron nanoparticles: metal-enhanced fluorescence. J Phys Chem C 114(17):7575–7581

    Article  CAS  Google Scholar 

  30. Jeong S et al (2011) Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate. Langmuir 27(6):3144–3149

    Article  CAS  Google Scholar 

  31. Chowdhury S et al (2009) Effect of Ag–Cu Alloy nanoparticle composition on luminescence enhancement/quenching. J Phys Chem C 113(30):13016–13022

    Article  CAS  Google Scholar 

  32. Koeppe R et al (2008) Energy transfer from CdSe/ZnS nanocrystals to zinc–phthalocyanine for advanced photon harvesting in organic photovoltaics. Progr Colloid Polym Sci 135:16–20

    CAS  Google Scholar 

  33. Pinaud F, King D, Moore HP et al (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123

    Article  CAS  Google Scholar 

  34. Wu S-H, Chen D-H (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169

    Article  CAS  Google Scholar 

  35. Wu C, Zeng T (2005) Simple one-step synthesis of uniform disperse copper nanoparticles. Mater Res Soc Symp Proc 879:Z.6.3.1–Z.6.3.6

    Google Scholar 

  36. Lisiecki I, Billoudet F, Pilene MP et al (1996) Control of the shape and the size of copper metallic particles. J Phys Chem 100(10):4160–4166

    Article  CAS  Google Scholar 

  37. Buboltz JT et al (2007) Stern–Volmer modeling of steady-state Förster energy transfer between dilute, freely diffusing membrane-bound fluorophores. J Chem Phys 127:215101

    Article  Google Scholar 

  38. Dulkeith E, Morteani AC, Niedereichholz T et al. (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002–203001–203004

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant no. CMS-409401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat R. Bhethanabotla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, S., Bhethanabotla, V.R. & Sen, R. Quenching of Fluorescence from CdSe/ZnS Nanocrystal QDs Near Copper Nanoparticles in Aqueous Solution. Plasmonics 6, 735–740 (2011). https://doi.org/10.1007/s11468-011-9257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9257-9

Keywords

Navigation