Skip to main content
Log in

Plasmonic Nanolithography: A Review

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon polaritons (SPPs) has attracted great attention in the last decade and recently it has been successfully applied to nanolithography due to its ability of beyond diffraction limit. This article reviews the recent development in plasmonic nanolithography, which is considered as one of the most remarkable technology for next-generation nanolithography. Nanolithography experiments were highlighted on the basis of SPPs effect. Three types of plasmonic nanolithography methods: contact nanolithography, planar lens imaging nanolithography, and direct writing nanolithography were reviewed in detail, and their advantages and shortages are analyzed and compared, respectively. Finally, the development trend of plasmonic nanolithography is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Vieu C, Carcenac F, Pépin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117

    Article  CAS  Google Scholar 

  2. Chou SY, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67(21):3114–3116

    Article  CAS  Google Scholar 

  3. Kim K-H, Ke C, Moldovan N, Espinosa HD (2003) Proceedings of the 4th International Symposium on MEMS and Nanotechnology, the 2003 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, June 2–4, Charlotte, North Carolina, Session 52. Paper 191:235–238

    Google Scholar 

  4. Wilson DL, Martin R, Hong S, Cronin-Golomb M, Mirkin CA, Kaplan DL (2001) Surface organization and nanopatterning of collagen by dip-pen nanolithography. PNAS 98:13660–13664

    Article  CAS  Google Scholar 

  5. Cheng X, Guo LJ (2004) A combined-nanoimprint-and-photolithography patterning technique. Microelectron Eng 71:277–282

    Article  CAS  Google Scholar 

  6. Yablonovitch E, Vrijen RB (1999) Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure. Opt Eng 38(2):334–338

    Article  Google Scholar 

  7. Crisalle OD, Keifling SR, Seborg DE, Mellichamp DA (1992) A comparison of the optical projection simulators in SAMPLE and PHOLITH. IEEE Trans Semicond Manuf 5:14–26

    Article  Google Scholar 

  8. Chan SH, Wong AK, Lam EY (2008) Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography. Opt Express 16(19):14746–14760

    Article  Google Scholar 

  9. Spille E, Feder R (1977) X-ray lithography. Top Appl Phys 22:35–92

    Google Scholar 

  10. Taylor JS, Sommargren GE, Sweeney DW, Hudyma RM (1998) Fabrication and testing of optics for EUV projection lithography. SPIE 3331:580–590

    Article  Google Scholar 

  11. Menon R, Gil D, Smith HI (2006) Experimental characterization of focusing by high-numerical-aperture zone plates. J Opt Soc Am A 23(3):567–571

    Article  Google Scholar 

  12. Smith HI (1996) A proposal for maskless, zone-plate-array nanolithography. J Vac Sci Technol B 14(6):4318–4322

    Article  CAS  Google Scholar 

  13. Menon R, Patel A, Moon EE, Smith HI (2004) Alpha-prototype system for zone-plate-array lithography. J Vac Sci Technol B 22(6):3032–3037

    Article  CAS  Google Scholar 

  14. Smith HI, Menon R, Patel A, Chao D, Walsh M, Barbastathis G (2006) Zone-plate-array lithography: a low-cost complement or competitor to scanning-electron-beam lithography. Microelectron Eng 83:956–961

    Article  CAS  Google Scholar 

  15. Menon R, Walsh M, Galus M, Chao D, Patel A, Smith HI (2005) Maskless lithography using diffractive-optical arrays, Frontiers in Optics, Tucson, Arizona Methodologies of Optical Design III (FWU).

  16. Menon R, Patel A, Gil D, Smith HI (2005) Maskless lithography, Materials today ISSN:1369 7021, 26–33.

  17. Yang L, Akhatov I, Mahinfalah M, Jang BZ (2007) Nano-fabrication: a review. J Chin Inst Eng 30(3):441–446

    Article  CAS  Google Scholar 

  18. Kuwahara M, Nakano T, Tominaga J, Lee MB, Atoda N (2000) A new lithography technique using super-resolution near-field structure. Microelectron Eng 53:535–538

    Article  CAS  Google Scholar 

  19. Goodberlet JG, Kavak H (2002) Patterning sub-50 nm features with near-field embedded-amplitude masks. Appl Phys Lett 81(7):1315–1317

    Article  CAS  Google Scholar 

  20. Ito T, Ogino M, Yamada T, Inao Y, Yamaguchi T, Mizutani N, Kuroda R (2005) Fabrication of sub-100 nm patterns using near-field mask lithography with ultra-thin resist process. J Photopolym Sci Technol 18(3):435–441

    Article  CAS  Google Scholar 

  21. Ito T, Yamada T, Inao Y, Yamaguchi T, Mizutani N, Kuroda R (2006) Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask. Appl Phys Lett 89:033113(1)–03113(3)

    Google Scholar 

  22. Inao Y, Nakasato S, Kuroda R, Ohtsu M (2007) Near-field lithography as prototype nanofabrication tool. Microelectron Eng 84:705–710

    Article  CAS  Google Scholar 

  23. Zhang YK, Dong XC, Du JL, Wei XZ, Shi LF, Deng QL, Du CL (2010) Nanolithography method by using localized surface plasmon mask generated with polydimethylsiloxane soft method on thin metal film. Opt Lett 35(13):2143–2145

    Article  Google Scholar 

  24. Srituravanich W, Durant S, Lee H, Sun C, Zhang X (2005) Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask. J Vac Sci Technol B 23(6):2636–2639

    Article  CAS  Google Scholar 

  25. Hicks EM, Zhang XY, Zou SL, Lyandres O, Spears KG, Schatz GC, Duyne RPV (2005) Plasmonic properties of film over nanowell surface fabricated by nanospheres lithography. J Phys Chem B 109:22351–22358

    Article  CAS  Google Scholar 

  26. Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:90–96

    Article  Google Scholar 

  27. Alkaisi MM, Blaikie RJ, McNab SJ (2001) Nanolithography in the evanescent near field. Adv Mater 13(12–13):877–887

    Article  CAS  Google Scholar 

  28. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4(6):1085–1088

    Article  CAS  Google Scholar 

  29. Srituravanich W, Fang N, Durant S, Ambati M, Sun C, Zhang X (2004) Sub-100 nm lithography using ultrashort wavelength of surface plasmons. J Vac Sci Technol B 22(6):3475–3478

    Article  CAS  Google Scholar 

  30. Shao DB, Chen SC (2008) Surface plasmon assisted contact scheme nanoscale photolithography using an UV lamp. J Vac Sci Technol B 26(1):227–231

    Article  CAS  Google Scholar 

  31. Zayats AV, Smolyaninov II (2006) High-optical-throughput individual nanoscale aperture in a multilayered metallic film. Opt Lett 31(3):398–400

    Article  CAS  Google Scholar 

  32. Xiong Y, Liu ZW, Zhang X (2008) Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers. Appl Phys Lett 93:111116(1)–111116(3)

    Google Scholar 

  33. Xu X, Jin EX, Uppuluri SM, Wang L (2007) Concentrating light into nanometer domain using nanoscale ridge apertures and its application in laser-based nanomanufacturing. J Phys Conf Ser 59:273–278

    Article  Google Scholar 

  34. Grober RD, Schoelkopf RJ, Prober DE (1997) Optical antenna: towards a unity efficiency near-field optical probe. Appl Phys Lett 70(11):1354–1356

    Article  CAS  Google Scholar 

  35. Kinzel EC, Xu X (2009) High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures. Opt Express 17(10):8036–8045

    Article  CAS  Google Scholar 

  36. Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 435:757–760

    Article  CAS  Google Scholar 

  37. Jin EX, Xu X (2005) Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture. Appl Phys Lett 86:111106(1)–111106(3)

    Google Scholar 

  38. Wang L, Uppuluri SM, Jin EX, Xu XF (2006) Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 6(3):361–364

    Article  CAS  Google Scholar 

  39. Ueno K, Takabatake S, Nishijima Y, Mizeikis V, Yokota Y, Misawa H (2010) Nanogap-assisted surface plasmon nanolithography. J Phys Chem Lett 1:657–662

    Article  CAS  Google Scholar 

  40. M-H Wu, Whitesides GM (2001) Fabrication of arrays of two-dimensional micropatterns using microsphere as lenses for projection photolithography. Appl Phys Lett 78(16):2273–2275

    Google Scholar 

  41. Sathiyamoorthy K, Sidharthan R, Sreekanth KV, Murukeshan VM (2010) Dye assisted enhanced transmission in near field optical lithography. Opt Commun 283:5245–5249

    Article  CAS  Google Scholar 

  42. Kik PG, Martin AL, Maier SA, Atwater HA (2002) Metal nanoparticle arrays for near field optical lithography. Proc SPIE 4810:7–13

    Article  Google Scholar 

  43. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969

    Article  CAS  Google Scholar 

  44. Zhang X, Liu ZW (2008) Superlens to overcome the diffraction limit. Nat Mater 7:435–441

    Article  CAS  Google Scholar 

  45. Chatterjee R, Panoiu NC, Liu K, Dios Z, Yu MB, Doan MT, Kaufman LJ, Osgood RM, Wong CW (2008) Achieving sub-diffraction imaging through bound surface states in negative-refracting photonics crystals at the near-infrared, American Physical Society March Meeting paper D35.00003.

  46. Shvets G (2003) Photonic approach to making a material with a negative index of refraction. Phys Rev B 67:035109(1)–035109(8)

    Article  CAS  Google Scholar 

  47. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1:41–48

    Article  CAS  Google Scholar 

  48. Jaksic Z, Vasiljevic-Radovic D, Maksimovic M, Sarajlic M, Vujanic A, Djuric Z (2006) Nanofabrication of negative refractive index metasurfaces. Microelectron Eng 83:1786–1791

    Article  CAS  Google Scholar 

  49. Aydin K, Bulu I, Ozbay E (2007) Subwavelength resolution with a negative-index metamaterial superlens. Appl Phys Lett 90:254102(1)–254102(3)

    Article  CAS  Google Scholar 

  50. Ma CB, Liu ZW (2010) Focusing light into deep subwavelength using metamaterial immersion lenses. Opt Express 18(5):4838–4844

    Article  CAS  Google Scholar 

  51. Tamma VA, Joshi S, Park W (2010) Optical frequency negative-index material based on silver nanocluster metamaterial, photonic metamaterials and plasmonics. Metamaterials III.

  52. Korobkin D, Urzhumov Y, Shvets G (2006) Enhanced near-field resolution in midinfrared using metamaterials. J Opt Soc Am B 23(3):468–478

    Article  CAS  Google Scholar 

  53. Fu YQ, Zhou XL (2010) Plasmonic lenses: a review. Plasmonics 5:287–310

    Article  CAS  Google Scholar 

  54. Fang N, Liu ZW, Yen T-J, Zhang X (2003) Opt Express 11(7):682–687

    Article  CAS  Google Scholar 

  55. Yang XF, Liu Y, Ma JX, Cui JH, Xing H, Wang W, Wang CB, Luo XG (2008) Broadband super-resolution imaging by a superlens with unmatched dielectric medium. Opt Express 16(24):19686–19694

    Article  CAS  Google Scholar 

  56. Cai WS, Genov DA, Shalaev VM (2005) A superlens based on metal-dielectric composites. Phys Rev B 72:193101(1)–193101(15)

    Google Scholar 

  57. Liu ZW, Fang N, Yen T-J, Zhang X (2003) Rapid growth of evanescent wave by a silver superlens. Appl Phys Lett 83(25):5184–5186

    Article  CAS  Google Scholar 

  58. Anantha Ramakrishna S, Pendry JB (2003) Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys Rev B 67:201101(1)–201101(4)

    Article  CAS  Google Scholar 

  59. Melville DOS, Blaikie RJ, Wolf CR (2004) Submicron imaging with a planar silver lens. Appl Phys Lett 84(22):4403–4405

    Article  CAS  Google Scholar 

  60. Melville DOS, Blaikie RJ (2005) Super-resolution imaging through a planar silver layer. Opt Express 13(6):2127–2134

    Article  CAS  Google Scholar 

  61. Blaikie RJ, Melville DOS, Alkaisi MM (2006) Super-resolution near-field lithography using planar silver lenses: a review of recent developments. Microelectron Eng 83:723–729

    Article  CAS  Google Scholar 

  62. Moore CP, Arnold MD, Bones PJ, Blaikie RJ (2008) Image fidelity for single-layer and multi-layer silver superlenses. J Opt Soc Am A 25(4):911–918

    Article  CAS  Google Scholar 

  63. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  Google Scholar 

  64. Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C, Zhang X (2005) Realization of optical superlens imaging below the diffraction limit. New J Phys 7(255):1–16

    Google Scholar 

  65. Chaturvedi P, Wu W, Logeeswaran VJ, Yu ZN, Saif Islam M, Wang SY, Williams RS, Fang NX (2010) A smooth optical superlens. Appl Phys Lett 96:043102(1)–043102(3)

    Article  CAS  Google Scholar 

  66. Shi Z, Kochergin V, Wang F (2009) 193 nm Superlens imaging structure for 20 nm lithography node. Opt Express 17(14):11309–11314

    Article  CAS  Google Scholar 

  67. Shi Z, Kochergin V, Wang F (2009) Depth-of-focus(DoF) analysis of a 193 nm superlens imaging structure. Opt Express 17(22):20538–20545

    Article  Google Scholar 

  68. Xu T, Fang L, Ma J, Zeng B, Liu Y, Cui J, Wang C, Feng Q, Luo X (2009) Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl Phys B 97:175–179

    Article  CAS  Google Scholar 

  69. Liu ZW, Durant S, Lee H, Pikus Y, Xiong Y, Sun C, Zhang X (2007) Experimental studies of far-field superlens for sub-diffraction optical imaging. Opt Express 15(11):6947–6954

    Article  Google Scholar 

  70. Liu ZW, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Far-field optical superlens. Nano Lett 7(2):403–408

    Article  CAS  Google Scholar 

  71. Milster T, Chen T, Nam D, Schlesinger E (2004) Maskless lithography with solid immersion lens nano probes. Proc SPIE 5567:545–556

    Article  Google Scholar 

  72. Bae JH, Ono T, Esashi M (2003) Scanning probe with an integrated diamond heater element for nanolithography. Appl Phys Lett 82(5):814–816

    Article  CAS  Google Scholar 

  73. Eckert R, Freyland JM, Gersen H, Heinzelmann H, Schürmann G, Noell W, Staufer U, de Rooij NF (2000) Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes. Appl Phys Lett 77(23):3695–3697

    Article  CAS  Google Scholar 

  74. Hamada M, Eguchi T, Akiyama K, Hasegawa Y (2008) Nanoscale lithography with frequency-modulation atomic force microscopy. Rev Sci Instrum 79:123706(1)–123706(4)

    Article  CAS  Google Scholar 

  75. Tian F, Yang GG, Bai J, Zhou QF, Hou CL, Xu JF, Liang YY (2010) Subwavelength-resolution direct writing using submicron-diameter fibers. Chin Opt Lett 8(3):326–328

    Google Scholar 

  76. Tian F, Yang GG, Bai J, Xu JF, Hou CL, Liang YY, Wang KW (2009) Laser direct writing using submicron-diameter fibers. Opt Express 17(22):19960–19968

    Article  CAS  Google Scholar 

  77. Ryu KS, Wang XF, Shaikh K, Bullen D, Goluch E, Zou J, Liu C, Mirkin CA (2004) Integrated microfluidic linking chip for scanning probe nanolithography. Appl Phys Lett 85(1):136–138

    Article  CAS  Google Scholar 

  78. Kim K-H, Moldovan N, Ke C, Espinosa HD, Xiao XC, Carlisle JA, Auciello O (2005) Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1(8–9):866–874

    Article  CAS  Google Scholar 

  79. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93(13):137404(1)–137404(4)

    Google Scholar 

  80. Ghislain LP, Elings VB, Crozier KB, Manalis SR, Minne SC, Wilder K, Kino GS, Quate CF (1999) Near-field photolithography with a solid immersion lens. Appl Phys Lett 74(4):501–503

    Article  CAS  Google Scholar 

  81. Zhang YJ, Suyama T, Shi TZ (2010) Near-field double-spot photolithography with subwavelength spacing. Opt Commun 283:3022–3025

    Article  CAS  Google Scholar 

  82. Kwon S, Kim P, Jeong S, Chang W, Chun C, Kim D-Y (2005) Fabrication of nano dot and line arrays using NSOM lithography. J Opt Soc Korea 9(1):16–21

    Article  CAS  Google Scholar 

  83. Minh PN, Ono T, Esashi M (2000) High throughput aperture near-field scanning optical microscopy. Rev Sci Instrum 71(8):3111–3116

    Article  CAS  Google Scholar 

  84. Leggett GJ (2006) Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem Soc Rev 35:1150–1161

    Article  CAS  Google Scholar 

  85. Tarun A, Daza MRH, Hayazawa N, Inouye Y, Kawata S (2002) apertureless optical near-field fabrication using an atomic force microscope on photoresist. Appl Phys Lett 80(18):3400–3402

    Article  CAS  Google Scholar 

  86. Raschke MB, Molina L, Elsaesser T, Kim DH, Knoll W, Hinrichs K (2005) Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. Chemphyschem 6:2197–2203

    Article  CAS  Google Scholar 

  87. Dryakhlushin VF, Klimov AY, Rogov VV, Vostokov NV (2005) Near-field optical lithography method for fabrication of the nanodimensional objects. Appl Surf Sci 248:200–203

    Article  CAS  Google Scholar 

  88. Shao DB, Li SF, Chen SC (2004) Near-field-enhanced, mold-assisted, parallel direct nanostructuring of a gold thin film on glass. Appl Phys Lett 85(22):5346–5348

    Article  CAS  Google Scholar 

  89. Hwang DJ, Cheimmalgi A, Grigoropoulos CP (2006) Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes. J Appl Phys 99:044905(1)–044905(11)

    Google Scholar 

  90. Haefliger D, Stemmer A (2004) Writing subwavelength-sized structures into aluminium films by thermo-chemical aperture-less near-field optical microscopy. Ultramicroscopy 100:457–464

    Article  CAS  Google Scholar 

  91. Kim Y, Park S, Lee E, Hahn JW (2008) Nanopatterning with a single high-transmission nano-metal aperture system, Proc. of SPIE 69212 C(1)-C(8).

  92. Wang Y, Srituravanich W, Sun C, Zhang X (2008) Plasmonic nearfield scanning probe with high transmission. Nana Lett 8(9):3041–3045

    Article  CAS  Google Scholar 

  93. Zhou LC, Gan QQ, Bartoli FJ, Dierolf V (2009) Direct near-field optical imaging of UV bowtie nanoantennas. Opt Express 17(22):20301–20306

    Article  Google Scholar 

  94. Jin EX, Xu XF (2006) Enhanced optical near field from a bowtie aperture. Appl Phys Lett 88:153110(1)–153110(3)

    Google Scholar 

  95. DuBay NM, Wang L, Kinzel EC, Uppuluri SMV, Xu X (2008) Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture. Opt Express 16(4):2584–2589

    Article  Google Scholar 

  96. Latini G, Downes A, Fenwick O, Ambrosio A, Allegrini M, Daniel C, Silva C, Gucciardi PG, Patanè S, Daik R, Feast WJ, Cacialli F (2005) Optical probing of sample heating in scanning near-field experiments with apertured probes. Appl Phys Lett 86:011102(1)–011102(3)

    Article  CAS  Google Scholar 

  97. Ambrosio A, Fenwick O, Cacialli F, Micheletto R, Kawakami Y, Gucciardi PG, Kang DJ, Allegrini M (2006) Shape dependent thermal effects in apertured fiber probes for scanning near-field optical microscopy. J Appl Phys 99:084303(1)–084303(6)

    Article  CAS  Google Scholar 

  98. Kim Y, Kim S, Jung H, Lee E, Hahn JW (2009) Plasmonic nano lithography with a high scan speed contact probe. Opt Express 17(22):19476–19485

    Article  CAS  Google Scholar 

  99. Srituravanich W, Pan L, Wang Y, Sun C, Bogy DB, Zhang X (2008) Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotechnol 3:733–737

    Article  CAS  Google Scholar 

  100. Pan L, Park Y-S, Xiong Y, Avila EU, Zeng L, Sun C, Bogy DB, Zhang X (2010) Flying plasmonic lens at near field for high speed nano-lithography. Proc. of SPIE 7637, 763713(1)–763713(6).

  101. Niu XY, Qi YM, Wang JQ, Zhang ZY, Du JL, Guo YK, Shi RY, Gong M (2010) Approach of enhancing exposure depth for evanescent wave interference lithography. Microelectron Eng 87:1168–1171

    Article  CAS  Google Scholar 

  102. Xiong W, Du JL, Fang L, Luo XG, Deng QL, Du CL (2008) 193 nm Interference nanolithography based on SPP. Microelectron Eng 85:754–757

    Article  CAS  Google Scholar 

  103. Shi S, Zhang ZY, He MY, Li XP, Yang J, Du JL (2010) Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface. Opt Express 18(10):10685–10693

    Article  CAS  Google Scholar 

  104. Lim Y, Kim S, Kim H, Jung J, Lee B (2008) Interference of surface plasmon waves amd plasmon coupled waveguide modes for the patterning of thin film. IEEE J Quantum Electron 44(4):305–311

    Article  CAS  Google Scholar 

  105. Sreekanth KV, Murukeshan VM (2010) Large-area maskless surface plasmon interference for one- and two-dimensional periodic nanoscale feature patterning. J Opt Soc Am A 27(1):95–99

    Article  CAS  Google Scholar 

  106. Guo XW, Du JL, Guo YK (2006) Large-area surface-plasmon polaritons interference lithography. Opt Express 31(17):2613–2615

    Google Scholar 

  107. Murukeshan VM, Chua JK, Tan SK, Lin QY (2008) Modeling of subwavelength resist grating features fabricated by evanescent waves interference. Opt Eng 47(12):129001(1)–129001(9)

    Google Scholar 

  108. Doskolovich LL, Kadomina EA, Kadomin II (2007) Nanoscale photolithography by means of surface plasmon interference. J Opt A Pure Appl Opt 9:854–857

    Article  Google Scholar 

  109. Sreekanth KV, Murukeshan VM (2010) Single-exposure maskless plasmonic lithography for patterning of periodic nanoscale grating features. J Micro/Nanolith MEMS MOEMS 9(2):023007(1)–023007(4)

    Google Scholar 

  110. Fang L, Du JL, Guo XW, Wang JQ, Zhang ZY, Luo XG, Du CL (2008) The theoretic analysis of maskless surface plasmon resonant interference lithography by prism coupling. Chin Phys B 17(7):2499–2503

    Google Scholar 

  111. Chua JK, Murukeshan VM, Tan SK, Lin QY (2007) Four beams evanescent waves interference lithography for patterning of two dimensional features. Opt Express 15(6):3437–3451

    Article  CAS  Google Scholar 

  112. He MY, Zhang ZY, Shi S, Du JL, Li XP, Li SH, Ma WY (2010) A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique. Opt Express 18(15):15975–15980

    Article  CAS  Google Scholar 

  113. Zeyang Liao, Al-Amri M, Suhail Zubairy M (2010) Quantum lithography beyond the diffraction limit via Rabi oscillations. Phys Rew Lett 105:183601

    Article  CAS  Google Scholar 

  114. Tallents G, Wagenaars E, Pert G (2010) Optical lithography: lithography at EUV wavelengths. Nat Photonics 4:809–811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China with grant numbers of 90923036, 609770410, 60877021, and 61077010. The financial support from the 100 Talents Program of Chinese Academy of Sciences is acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weixing Yu or Yongqi Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Yu, W., Wang, T. et al. Plasmonic Nanolithography: A Review. Plasmonics 6, 565–580 (2011). https://doi.org/10.1007/s11468-011-9237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9237-0

Keywords

Navigation